30,226 research outputs found

    Antidote application: an educational system for treatment of common toxin overdose

    Full text link
    Poisonings account for almost 1% of emergency room visits each year. Time is a critical factor in dealing with a toxicologic emergency. Delay in dispensing the first antidote dose can lead to life-threatening sequelae. Current toxicological resources that support treatment decisions are broad in scope, time-consuming to read, or at times unavailable. Our review of current toxicological resources revealed a gap in their ability to provide expedient calculations and recommendations about appropriate course of treatment. To bridge the gap, we developed the Antidote Application (AA), a computational system that automatically provides patient-specific antidote treatment recommendations and individualized dose calculations. We implemented 27 algorithms that describe FDA (the US Food and Drug Administration) approved use and evidence-based practices found in primary literature for the treatment of common toxin exposure. The AA covers 29 antidotes recommended by Poison Control and toxicology experts, 19 poison classes and 31 poisons, which represent over 200 toxic entities. To the best of our knowledge, the AA is the first educational decision support system in toxicology that provides patient-specific treatment recommendations and drug dose calculations. The AA is publicly available at http://projects.met- hilab.org/antidote/

    Design of a SiC-Based Switched CCM/TCM Inverter for High-speed Machine Drive with Low PWM-Induced Current Ripple

    Get PDF

    Resource Management for Intelligent Reflecting Surface Assisted THz-MIMO Network

    Get PDF
    As the preferred frequency band for future high frequency communication, the terahertz (THz) band has at-tracted wide attention. In this paper, an energy efficient resource optimization problem in THz band is studied. The massive Multiple-Input Multiple-Output (MIMO) technology and intelligent reflecting surface (IRS) are adopted to improve the capacity and energy efficiency (EE) of proposed network. An IRS assisted THz-MIMO downlink wireless network system is established. The original EE problem is decomposed into phase-shift matrix optimization and power allocation. On this basis, a distributed EE optimization algorithm is designed, which transforms the original nonlinear problem into a convex optimization problem. The simulation results reveal that the proposed distributed optimization method converges rapidly and abtains the maximum EE. This also proves that it is feasible and effective to apply both the IRS and the massive MIMO technology into THz communication network

    High-Pressure Induced Structural Phase Transition in CaCrO4: Evidence from Raman Scattering Studies

    Full text link
    Raman spectroscopic studies have been carried out on CaCrO4 under pressure up to 26GPa at ambient temperature. The Raman spectra showed CaCrO4 experienced a continuous structural phase transition started at near 6GPa, and finished at about 10GPa. It is found that the high-pressure phase could be quenched to ambient conditions. Pressure dependence of the Raman peaks suggested there existed four pressure regions related to different structural characters. We discussed these characters and inferred that the nonreversible structural transition in CaCrO4, most likely was from a zircon-type (I41/amd) ambient phase to a scheelite-type high pressure structure (I41/a).Comment: submitte
    • …
    corecore