14,528 research outputs found
Noise removal in multichannel images
A adaptive filtering method, the Windrow-Hoff algorithm, for enhancing multichannel signals against aditive noise was investigated. It removes noise for multichannel images containing correlated signal compoments but uncorrelated noise components. Its potential application is the enhancement of multichannel microwave satellite images as a preprocessing step for the extraction of geophysical parameters
The vibrational predissociation spectroscopy of hydrogen cluster ions
The first infrared spectra of protonated hydrogen clusters in the gas phase have been observed. Predissociation spectra were taken with a tandem mass spectrometer: mass selected hydrogen cluster ions were irradiated inside a rf ion trap by a tunable infrared laser, and the fragment ions created by photodissociation of the clusters were mass selected and detected. Spectra for each product channel were measured by counting fragment ions as a function of laser frequency. Low resolution spectra (Deltanu=10 cm^−1) in the region from 3800 to 4200 cm^−1 were observed for the ions H + 5, H + 7, and H + 9 at 3910, 3980, and 4020 cm−1, respectively. A band was also observed for H + 5 at 3532 cm^−1. No rotational structure was resolved. The frequencies of the band maxima agree well with the frequencies predicted by previous ab initio calculations for the highest modes
Infrared spectra of the cluster ions H7O<sup> + </sup><sub>3</sub>·H2 and H9O<sup> + </sup><sub>4</sub>·H2
Infrared spectra of hydrated hydronium ions weakly bound to an H2 molecule, specifically H7O + 3 ·H2 and H9O + 4 ·H2, have been observed. Mass-selected parent ions, trapped in a radio frequency ion trap, are excited by a tunable infrared laser; following absorption, the complex predissociates with loss of the H2, and the resulting fragment ions are detected. Spectra have been taken from 3000 to 4000 cm^−1, with a resolution of 1.2 cm^−1. They are compared to recent theoretical and experimental spectra of the hydronium ion hydrates alone. Binding an H2 molecule to these clusters should only weakly perturb their vibrations; if so, our spectra should be similar to spectra of the hydrated hydronium ions H7O + 3 and H9O + 4
Restoration of multichannel microwave radiometric images
A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation
Resolution enhancement of multichannel microwave imagery from the Nimbus-7 SMMR for maritime rainfall analysis
A restoration of the 37, 21, 18, 10.7, and 6.6 GHz satellite imagery from the scanning multichannel microwave radiometer (SMMR) aboard Nimbus-7 to 22.2 km resolution is attempted using a deconvolution method based upon nonlinear programming. The images are deconvolved with and without the aid of prescribed constraints, which force the processed image to abide by partial a priori knowledge of the high-resolution result. The restored microwave imagery may be utilized to examined the distribution of precipitating liquid water in marine rain systems
Scanning Tunneling Spectroscopic Studies of the Low-Energy Quasiparticle Excitations in Cuprate Superconductors
We report scanning tunneling spectroscopic (STS) studies of the low-energy quasiparticle excitations of cuprate superconductors as a function of magnetic field and doping level. Our studies suggest that the origin of the pseudogap (PG) is associated with competing orders (COs), and that the occurrence (absence) of PG above the superconducting (SC) transition T_c is associated with a CO energy Δ_(CO) larger (smaller) than the SC gap Δ_(SC). Moreover, the spatial homogeneity of Δ_(SC) and Δ_(CO) depends on the type of disorder in different cuprates: For optimally and under-doped YBa_2Cu_3O_(7−δ) (Y-123), we find that Δ_(SC) < Δ_(CO) and that both Δ_(SC) and Δ(CO) exhibit long-range spatial homogeneity, in contrast to the highly inhomogeneous STS in Bi_2Sr_2CaCu_2O_(8+x) (Bi-2212). We attribute this contrast to the stoichiometric cations and ordered apical oxygen in Y-123, which differs from the non-stoichiometric Bi-to-Sr ratio in Bi-2212 with disordered Sr and apical oxygen in the SrO planes. For Ca-doped Y-123, the substitution of Y by Ca contributes to excess holes and disorder in the CuO_2 planes, giving rise to increasing inhomogeneity, decreasing Δ_(SC) and Δ_(CO), and a suppressed vortex-solid phase. For electron-type cuprate Sr_(0.9)La_(0.1)CuO_2 (La-112), the homogeneous Δ_(SC) and Δ_(CO) distributions may be attributed to stoichiometric cations and the absence of apical oxygen, with Δ_(CO) < Δ_(SC) revealed only inside the vortex cores. Finally, the vortex-core radius (ξ_(halo)) in electron-type cuprates is comparable to the SC coherence length ξ_(SC), whereas ξ_(halo) ∼ 10ξ_(SC) in hole-type cuprates, suggesting that ξ_(halo) may be correlated with the CO strength. The vortex-state irreversibility line in the magnetic field versus temperature phase diagram also reveals doping dependence, indicating the relevance of competing orders to vortex pinning
Recommended from our members
Infrared spectroscopy of the cluster ions H<sup> + </sup><sub>3</sub>·(H2)n
The vibrational spectra of the clusters H + 3(H2)n were observed near 4000 cm−1 by vibrational predissociation spectroscopy. Spectra of mass-selected clusters were obtained by trapping the ions in a radio frequency ion trap, exciting vibrational transitions of the cluster ions to predissociating levels, and detecting the fragment ions with a mass spectrometer. Low resolution bands of the solvent H2 stretches were observed for the clusters of one to six H2 coordinated to an H + 3 ion. The red shift of these vibrations relative to the monomer H2 frequency supported the model of H + 9 as an H + 3 with a complete inner solvation shell of three H2, one bound to each corner of the ion. Two additional bands of H + 5 were observed, one assigned as the H + 3 symmetric stretch, and the other as a combination or overtone band. High-resolution scans (0.5 and 0.08 cm−1) of H + n, n=5, 7, and 9 yielded no observable rotational structure, a result of either spectral congestion or rapid cluster dissociation. The band contour of the H + 5 band changed upon cooling the internal degrees of freedom, but the peaks remained featureless. The observed frequencies of H + 7 and H + 9 agreed well with ab initio predictions, but those of H + 5 did not. This deviation is discussed in terms of the large expected anharmonicity of the proton bound dimer H + 5
Scanning Tunnelling Spectroscopic Studies of Dirac Fermions in Graphene and Topological Insulators
We report novel properties derived from scanning tunnelling spectroscopic (STS) studies of Dirac fermions in graphene and the surface state (SS) of a strong topological insulator (STI), Bi_2Se_3. For mono-layer graphene grown on Cu by chemical vapour deposition (CVD), strain-induced scalar and gauge potentials are manifested by the charging effects and the tunnelling conductance peaks at quantized energies, respectively. Additionally, spontaneous time-reversal symmetry breaking is evidenced by the alternating anti-localization and localization spectra associated with the zero-mode of two sublattices while global time-reversal symmetry is preserved under the presence of pseudo-magnetic fields. For Bi_2Se_3 epitaxial films grown on Si(111) by molecular beam epitaxy (MBE), spatially localized unitary impurity resonances with sensitive dependence on the energy difference between the Fermi level and the Dirac point are observed for samples thicker than 6 quintuple layers (QL). These findings are characteristic of the SS of a STI and are direct manifestation of strong topological protection against impurities. For samples thinner than 6-QL, STS studies reveal the openup of an energy gap in the SS due to overlaps of wave functions between the surface and interface layers. Additionally, spin-preserving quasiparticle interference wave-vectors are observed, which are consistent with the Rashba-like spin-orbit splitting
Quasiparticle spectroscopy and high-field phase diagrams of cuprate superconductors -- An investigation of competing orders and quantum criticality
We present scanning tunneling spectroscopic and high-field thermodynamic
studies of hole- and electron-doped (p- and n-type) cuprate superconductors.
Our experimental results are consistent with the notion that the ground state
of cuprates is in proximity to a quantum critical point (QCP) that separates a
pure superconducting (SC) phase from a phase comprised of coexisting SC and a
competing order, and the competing order is likely a spin-density wave (SDW).
The effect of applied magnetic field, tunneling current, and disorder on the
revelation of competing orders and on the low-energy excitations of the
cuprates is discussed.Comment: 10 pages, 5 figures. Accepted for publication in the International
Journal of Modern Physics B. (Correspondence author: Nai-Chang Yeh, e-mail:
[email protected]
- …