24,902 research outputs found
Impedance Analysis of Bunch Length Measurements at the ATF Damping Ring
We present energy spread and bunch length measurements at the Accelerator
Test Facility (ATF) at KEK, as functions of current, for different ring rf
voltages, and with the beam both on and off the coupling resonance. We fit the
on-coupling bunch shapes to those of an impedance model consisting of a
resistor and an inductor connected in series. We find that the fits are
reasonably good, but that the resulting impedance is unexpectedly large.Comment: 9 pages, 5 figures, presented at 10th International Symposium on
Applied Electromagnetics and Mechanics (ISEM2001
Transfer-matrix renormalization group study of the spin ladders with cyclic four-spin interactions
The temperature dependence of the specific heat and spin susceptibility of
the spin ladders with cyclic four-spin interactions in the rung-singlet phase
is explored by making use of the transfer-matrix renormalization group method.
The values of spin gap are extracted from the specific heat and susceptibility,
respectively. It is found that for different relative strength between
interchain and intrachain interactions, the spin gap is approximately linear
with the cyclic four-spin interaction in the region far away from the critical
point. Furthermore, we show that the dispersion for the one-triplet magnon
branch can be obtained by numerically fitting on the partition function.Comment: 7 pages, 7 figures, 1 tabl
Foreground object segmentation in RGB-D data implemented on GPU
This paper presents a GPU implementation of two foreground object
segmentation algorithms: Gaussian Mixture Model (GMM) and Pixel Based Adaptive
Segmenter (PBAS) modified for RGB-D data support. The simultaneous use of
colour (RGB) and depth (D) data allows to improve segmentation accuracy,
especially in case of colour camouflage, illumination changes and occurrence of
shadows. Three GPUs were used to accelerate calculations: embedded NVIDIA
Jetson TX2 (Maxwell architecture), mobile NVIDIA GeForce GTX 1050m (Pascal
architecture) and efficient NVIDIA RTX 2070 (Turing architecture). Segmentation
accuracy comparable to previously published works was obtained. Moreover, the
use of a GPU platform allowed to get real-time image processing. In addition,
the system has been adapted to work with two RGB-D sensors: RealSense D415 and
D435 from Intel.Comment: 12 pages, 4 figures, submitted to KKA 2020 conferenc
Non-Isolated Single-Inductor DC/DC Converter with Fully Reconfigurable Structure for Renewable Energy Applications
© 2017 IEEE. A novel non-isolated three-port converter (NITPC) is introduced in this brief. The purpose of this topology is to integrate a regenerative load such as DC bus and motor with dynamic braking, instead of the widely reported consuming load, with a photovoltaic (PV)-battery system. Conventional methods require either a separate DC-DC converter to process the reversible power flow or employing an isolated three-port converter (TPC), which allows bi-directional power flow between any two ports. However, these methods require many switches, which increases the converter size and control complexity. This brief hence presents a compact but fully functional design by combining and integrating basic converters to form a simplified single-inductor converter structure while keeping a minimum amount of switches. The resultant converter is fully reconfigurable that all possible power flow combinations among the sources and load are achieved through different switching patterns, while preserving the single power processing feature of TPC. This brief presents a design example of the proposed NITPC for a PV-battery powered DC microgrid. Detailed circuitry analysis, operation principles of both DC grid-connected and islanded modes, and experimental results of different modes in steady state and mode transitions are presented
Quantum transfer matrix method for one-dimensional disordered electronic systems
We develop a novel quantum transfer matrix method to study thermodynamic
properties of one-dimensional (1D) disordered electronic systems. It is shown
that the partition function can be expressed as a product of local
transfer matrices. We demonstrate this method by applying it to the 1D
disordered Anderson model. Thermodynamic quantities of this model are
calculated and discussed.Comment: 7 pages, 10 figure
Phase differential angular rate sensor-concept and analysis
This paper proposes and analyzes a new differential phase angular rate (AR) sensor employing a vibrating beam mass structure that traces an elliptical path when subject to rotation due to Coriolis force. Two sensing elements are strategically located to sense a combination of drive and Coriolis vibration to create a phase differential representative of the input rotation rate. A general model is developed, describing the device operation. The main advantages of the phase detection scheme are explored, including removing the need to maintain constant drive amplitude, independence of sensing element gain factor, and advantageous response shapes. A ratio of device parameters is defined and shown to dictate the device response shape. This ratio can be varied to give an optimally linear phase difference output over a set input range, a high sensitivity around zero input rate, or a response shape not seen before, that can give maximum sensitivity around an offset from the zero-rate input. This may be exploited in an array configuration for a highly accurate device over a wide input range. A worked example shows how the developed equations can be used as design tools to achieve a desired response with low sensitivity to variation in device parameters
- …