5,277 research outputs found
On classical string configurations
Equations which define classical configurations of strings in are
presented in a simple form. General properties as well as particular classes of
solutions of these equations are considered.Comment: 10 pages, Latex, no figures, trivial corrections, submitted to Modern
Physics Letters
Biharmonic Riemannian submersions from 3-manifolds
An important theorem about biharmonic submanifolds proved independently by
Chen-Ishikawa [CI] and Jiang [Ji] states that an isometric immersion of a
surface into 3-dimensional Euclidean space is biharmonic if and only if it is
harmonic (i.e, minimal). In a later paper [CMO2], Cadeo-Monttaldo-Oniciuc shown
that the theorem remains true if the target Euclidean space is replaced by a
3-dimensional hyperbolic space form. In this paper, we prove the dual results
for Riemannian submersions, i.e., a Riemannian submersion from a 3-dimensional
space form of non-positive curvature into a surface is biharmonic if and only
if it is harmonic
Continuous-Variable Spatial Entanglement for Bright Optical Beams
A light beam is said to be position squeezed if its position can be
determined to an accuracy beyond the standard quantum limit. We identify the
position and momentum observables for bright optical beams and show that
position and momentum entanglement can be generated by interfering two
position, or momentum, squeezed beams on a beam splitter. The position and
momentum measurements of these beams can be performed using a homodyne detector
with local oscillator of an appropriate transverse beam profile. We compare
this form of spatial entanglement with split detection-based spatial
entanglement.Comment: 7 pages, 3 figures, submitted to PR
Narrowband frequency tunable light source of continuous quadrature entanglement
We report the observation of non-classical quantum correlations of continuous
light variables from a novel type of source. It is a frequency non-degenerate
optical parametric oscillator below threshold, where signal and idler fields
are separated by 740MHz corresponding to two free spectrum ranges of the
parametric oscillator cavity. The degree of entanglement observed, - 3.8 dB, is
the highest to-date for a narrowband tunable source suitable for atomic quantum
memory and other applications in atomic physics. Finally we use the latter to
visualize the Einstein-Podolsky-Rosen paradox.Comment: 11 pages, 9 figures, LaTe
No-cloning theorem and teleportation criteria for quantum continuous variables
We discuss the criteria presently used for evaluating the efficiency of
quantum teleportation schemes for continuous variables. Using an argument based
upon the difference between 1-to-2 quantum cloning (quantum duplication) and
1-to-infinity cloning (classical measurement), we show that a fidelity value
larger than 2/3 is required for successful quantum teleportation of coherent
states. This value has not been reached experimentally so far.Comment: 4 pages, 1 figure, submitted to Phys. Rev.
The Mach-Zehnder and the Teleporter
We suggest a self-testing teleportation configuration for photon q-bits based
on a Mach-Zehnder interferometer. That is, Bob can tell how well the input
state has been teleported without knowing what that input state was. One could
imagine building a "locked" teleporter based on this configuration. The
analysis is performed for continuous variable teleportation but the arrangement
could equally be applied to discrete manipulations.Comment: 4 pages, 5 figure
Conditional teleportation using optical squeezers and photon counting
We suggest a scheme of using two-mode squeezed vacuum for conditional
teleportation of quantum states of optical field. Alice mixes the input state
with one of the squeezed modes on another squeezing device and detects the
output photon numbers. The result is then communicated to Bob who shifts the
photon number of his part accordingly. This is a principally realizable
modification of the recent scheme [G.J. Milburn and S.L. Braunstein, Phys. Rev.
A 60, 937 (1999)] where measurements of photon number difference and phase sum
are considered. We show that for some classes of states this method can yield
very high fidelity of teleportation, nevertheless, the success probability may
be limited.Comment: 5 pages, 4 figures; notations simplified, more explicit explanatio
Quantum Communication with Correlated Nonclassical States
Nonclassical correlations between the quadrature-phase amplitudes of two
spatially separated optical beams are exploited to realize a two-channel
quantum communication experiment with a high degree of immunity to
interception. For this scheme, either channel alone can have an arbitrarily
small signal-to-noise ratio (SNR) for transmission of a coherent ``message''.
However, when the transmitted beams are combined properly upon authorized
detection, the encoded message can in principle be recovered with the original
SNR of the source. An experimental demonstration has achieved a 3.2 dB
improvement in SNR over that possible with correlated classical sources.
Extensions of the protocol to improve its security against eavesdropping are
discussed.Comment: 8 pages and 4 figures (Figure 1; Figures 2a, 2b; Figure 2
Microrheology with optical tweezers: data analysis
We present a data analysis procedure that provides the solution to a long-standing issue in microrheology studies, i.e. the evaluation of the fluids' linear viscoelastic properties from the analysis of a finite set of experimental data, describing (for instance) the time-dependent mean-square displacement of suspended probe particles experiencing Brownian fluctuations. We report, for the first time in the literature, the linear viscoelastic response of an optically trapped bead suspended in a Newtonian fluid, over the entire range of experimentally accessible frequencies. The general validity of the proposed method makes it transferable to the majority of microrheology and rheology techniques
- …