5,750 research outputs found
Effective Average Action of Chern-Simons Field Theory
The renormalization of the Chern-Simons parameter is investigated by using an
exact and manifestly gauge invariant evolution equation for the scale-dependent
effective average action.Comment: 14 pages, late
Spin coherence of holes in GaAs/AlGaAs quantum wells
The carrier spin coherence in a p-doped GaAs/(Al,Ga)As quantum well with a
diluted hole gas has been studied by picosecond pump-probe Kerr rotation with
an in-plane magnetic field. For resonant optical excitation of the positively
charged exciton the spin precession shows two types of oscillations. Fast
oscillating electron spin beats decay with the radiative lifetime of the
charged exciton of 50 ps. Long lived spin coherence of the holes with dephasing
times up to 650 ps. The spin dephasing time as well as the in-plane hole g
factor show strong temperature dependence, underlining the importance of hole
localization at cryogenic temperatures.Comment: 5 pages, 4 figures in PostScript forma
Intrinsic spin fluctuations reveal the dynamical response function of holes coupled to nuclear spin baths in (In,Ga)As quantum dots
The problem of how single "central" spins interact with a nuclear spin bath
is essential for understanding decoherence and relaxation in many quantum
systems, yet is highly nontrivial owing to the many-body couplings involved.
Different models yield widely varying timescales and dynamical responses
(exponential, power-law, Gaussian, etc). Here we detect the small random
fluctuations of central spins in thermal equilibrium (holes in singly-charged
(In,Ga)As quantum dots) to reveal the timescales and functional form of
bath-induced spin relaxation. This spin noise indicates long (400 ns) spin
correlation times at zero magnetic field, that increase to 5 s as
hole-nuclear coupling is suppressed with small (100 G) applied fields.
Concomitantly, the noise lineshape evolves from Lorentzian to power-law,
indicating a crossover from exponential to inverse-log dynamics.Comment: 4 pages & 4 figures, + 8 pages supplemental materia
Spin dynamics of electrons and holes in InGaAs/GaAs quantum wells at milliKelvin temperatures
The carrier spin dynamics in a n-doped (In,Ga)As/GaAs quantum well has been
studied by time-resolved Faraday rotation and ellipticity techniques in the
temperature range down to 430 milliKelvin. These techniques give data with very
different spectral dependencies, from which nonetheless consistent information
on the spin dynamics can be obtained, in agreement with theoretical
predictions. The mechanisms of long-lived spin coherence generation are
discussed for the cases of trion and exciton resonant excitation. We
demonstrate that carrier localization leads to a saturation of spin relaxation
times at 45 ns for electrons below 4.5 K and at 2 ns for holes below 2.3 K. The
underlying spin relaxation mechanisms are discussed.Comment: 8 pages, 8 figure
Sequential and co-tunneling behavior in the temperature-dependent thermopower of few-electron quantum dots
We have studied the temperature dependent thermopower of gate-defined,
lateral quantum dots in the Coulomb blockade regime using an electron heating
technique. The line shape of the thermopower oscillations depends strongly on
the contributing tunneling processes. Between 1.5 K and 40 mK a crossover from
a pure sawtooth- to an intermitted sawtooth-like line shape is observed. The
latter is attributed to the increasing dominance of cotunneling processes in
the Coulomb blockade regime at low temperatures.Comment: 4 pages, 4 figures, submitted to Phys. Rev.
Fractal space-times under the microscope: A Renormalization Group view on Monte Carlo data
The emergence of fractal features in the microscopic structure of space-time
is a common theme in many approaches to quantum gravity. In this work we carry
out a detailed renormalization group study of the spectral dimension and
walk dimension associated with the effective space-times of
asymptotically safe Quantum Einstein Gravity (QEG). We discover three scaling
regimes where these generalized dimensions are approximately constant for an
extended range of length scales: a classical regime where , a
semi-classical regime where , and the UV-fixed point
regime where . On the length scales covered by
three-dimensional Monte Carlo simulations, the resulting spectral dimension is
shown to be in very good agreement with the data. This comparison also provides
a natural explanation for the apparent puzzle between the short distance
behavior of the spectral dimension reported from Causal Dynamical
Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and Asymptotic
Safety.Comment: 26 pages, 6 figure
Thermopower of a Kondo-correlated quantum dot
The thermopower of a Kondo-correlated gate-defined quantum dot is studied
using a current heating technique. In the presence of spin correlations the
thermopower shows a clear deviation from the semiclassical Mott relation
between thermopower and conductivity. The strong thermopower signal indicates a
significant asymmetry in the spectral density of states of the Kondo resonance
with respect to the Fermi energies of the reservoirs. The observed behavior can
be explained within the framework of an Anderson-impurity model.
Keywords: Thermoelectric and thermomagnetic effects, Coulomb blockade, single
electron tunneling, Kondo-effect
PACS Numbers: 72.20.Pa, 73.23.HkComment: 4 pages, 4 figures, revised version, changed figure
Effective Average Action in N=1 Super-Yang-Mills Theory
For N=1 Super-Yang-Mills theory we generalize the effective average action
Gamma_k in a manifest supersymmetric way using the superspace formalism. The
exact evolution equation for Gamma_k is derived and, introducing as an
application a simple truncation, the standard one-loop beta-function of N=1 SYM
theory is obtained.Comment: 17 pages, LaTeX, some remarks added, misprints corrected, to appear
in Phys. Rev.
Is Quantum Einstein Gravity Nonperturbatively Renormalizable?
We find considerable evidence supporting the conjecture that four-dimensional
Quantum Einstein Gravity is ``asymptotically safe'' in Weinberg's sense. This
would mean that the theory is likely to be nonperturbatively renormalizable and
thus could be considered a fundamental (rather than merely effective) theory
which is mathematically consistent and predictive down to arbitrarily small
length scales. For a truncated version of the exact flow equation of the
effective average action we establish the existence of a non-Gaussian
renormalization group fixed point which is suitable for the construction of a
nonperturbative infinite cutoff-limit. The truncation ansatz includes the
Einstein-Hilbert action and a higher derivative term.Comment: 18 pages, latex, 3 figure
- …
