14,858 research outputs found
Stabilization of Quantum Spin Hall Effect by Designed Removal of Time-Reversal Symmetry of Edge States
The quantum spin Hall (QSH) effect is known to be unstable to perturbations
violating time-reversal symmetry. We show that creating a narrow ferromagnetic
(FM) region near the edge of a QSH sample can push one of the
counterpropagating edge states to the inner boundary of the FM region, and
leave the other at the outer boundary, without changing their spin
polarizations and propagation directions. Since the two edge states are
spatially separated into different "lanes", the QSH effect becomes robust
against symmetry-breaking perturbations.Comment: 5 pages, 4 figure
Probing neutrino mass hierarchies and with supernova neutrinos
We investigate the feasibility of probing the neutrino mass hierarchy and the
mixing angle with the neutrino burst from a future supernova. An
inverse power-law density with varying is adopted in the
analysis as the density profile of a typical core-collapse supernova. The
survival probabilities of and are shown to reduce to
two-dimensional functions of and . It is found that in the
parameter space, the 3D plots of the probability
functions exhibit highly non-trivial structures that are sensitive to the mass
hierarchy, the mixing angle , and the value of . The conditions
that lead to observable differences in the 3D plots are established. With the
uncertainty of considered, a qualitative analysis of the Earth matter
effect is also included.Comment: 16 pages, 3 figures. Ref [11] added, and some typos correcte
Fast and easy blind deblurring using an inverse filter and PROBE
PROBE (Progressive Removal of Blur Residual) is a recursive framework for
blind deblurring. Using the elementary modified inverse filter at its core,
PROBE's experimental performance meets or exceeds the state of the art, both
visually and quantitatively. Remarkably, PROBE lends itself to analysis that
reveals its convergence properties. PROBE is motivated by recent ideas on
progressive blind deblurring, but breaks away from previous research by its
simplicity, speed, performance and potential for analysis. PROBE is neither a
functional minimization approach, nor an open-loop sequential method (blur
kernel estimation followed by non-blind deblurring). PROBE is a feedback
scheme, deriving its unique strength from the closed-loop architecture rather
than from the accuracy of its algorithmic components
Palatini Formalism of 5-Dimensional Kaluza-Klein Theory
The Einstein field equations can be derived in dimensions () by the
variations of the Palatini action. The Killing reduction of 5-dimensional
Palatini action is studied on the assumption that pentads and Lorentz
connections are preserved by the Killing vector field. A Palatini formalism of
4-dimensional action for gravity coupled to a vector field and a scalar field
is obtained, which gives exactly the same fields equations in Kaluza-Klein
theory.Comment: 10 page
Octet Quark Contents from SU(3) Flavor Symmetry
With the parametrization of parton distribution functions (PDFs) of the
proton by Soffer \textit{et al.}, we extend the valence quark contents to other
octet baryons by utilizing SU(3) flavor symmetry. We find the method
practically useful. Fragmentation functions (FFs) are further obtained through
the phenomenological Gribov-Lipatov relation at the region. Our
results are compared with different models, and these different predictions can
be discriminated by upcoming experiments.Comment: 6 pages, 5 figures, final version for journal publicatio
Dry-out CHF correlation for R134a flow boiling in a horizontal helically-coiled tube
An experimental study was carried out to investigate the R134a dry-out critical heat flux (CHF) characteristics in a horizontal helically-coiled tube. The test section was heated uniformly by DC high-power source, and its geometrical parameters are the outer diameter of 10 mm, inner diameter of 8.4 mm, coil diameter of 300 mm, helical pitch of 75 mm and valid heated length of 1.89 m. The experimental parameters are the outlet pressures of 0.30–0.95 MPa, mass fluxes of 60–500 kg m 2 s 1, inlet qualities of 0.36–0.35 and heat fluxes of 7.0 103–5.0 104 Wm 2. A method based on Agilent BenchLink Data Logger Pro was developed to determine the occurrence of CHF with a total of 68 T-type thermocouples (0.2 mm) set along the tube for accurate temperature measurement. The characteristics of wall temperatures and the parametric effect on dry-out CHF showed that temperature would jump abruptly at the point of CHF, which usually started to form at the front and offside (270 and 90 ) of the outlet crosssection. The CHF values decrease nearly linearly with increasing inlet qualities, while they decrease more acutely with increasing critical qualities, especially under larger mass flux conditions. The mass flux has a positive effect on CHF enhancement, but the pressure has negative one. A new dimensionless correlation was developed to estimate dry-out CHF of R134a flow boiling in horizontal helically-coiled tubes under current experimental conditions and compared to calculated results from Bowring and Shah correlations
Echo Emission From Dust Scattering and X-Ray Afterglows of Gamma-Ray Bursts
We investigate the effect of X-ray echo emission in gamma-ray bursts (GRBs).
We find that the echo emission can provide an alternative way of understanding
X-ray shallow decays and jet breaks. In particular, a shallow decay followed by
a "normal" decay and a further rapid decay of X-ray afterglows can be together
explained as being due to the echo from prompt X-ray emission scattered by dust
grains in a massive wind bubble around a GRB progenitor. We also introduce an
extra temporal break in the X-ray echo emission. By fitting the afterglow light
curves, we can measure the locations of the massive wind bubbles, which will
bring us closer to finding the mass loss rate, wind velocity, and the age of
the progenitors prior to the GRB explosions.Comment: 25 pages, 3 figures, 2 tables. Accepted for publication in Ap
On the Construction of Correlation Functions for the Integrable Supersymmetric Fermion Models
We review the recent progress on the construction of the determinant
representations of the correlation functions for the integrable supersymmetric
fermion models. The factorizing -matrices (or the so-called -basis) play
an important role in the construction. In the -basis, the creation (and the
annihilation) operators and the Bethe states of the integrable models are given
in completely symmetric forms. This leads to the determinant representations of
the scalar products of the Bethe states for the models. Based on the scalar
products, the determinant representations of the correlation functions may be
obtained. As an example, in this review, we give the determinant
representations of the two-point correlation function for the \gl (i.e.
q-deformed) supersymmetric t-J model. The determinant representations are
useful for analysing physical properties of the integrable models in the
thermodynamical limit.Comment: Latex file, 42 pages. Invited review article for Int. J. Mod. Phys.
B; V2: Two references added, mionor typos correcte
Transient currents and universal timescales for a fully time-dependent quantum dot in the Kondo regime
Using the time-dependent non-crossing approximation, we calculate the
transient response of the current through a quantum dot subject to a finite
bias when the dot level is moved suddenly into a regime where the Kondo effect
is present. After an initial small but rapid response, the time-dependent
conductance is a universal function of the temperature, bias, and inverse time,
all expressed in units of the Kondo temperature. Two timescales emerge: the
first is the time to reach a quasi-metastable point where the Kondo resonance
is formed as a broad structure of half-width of the order of the bias; the
second is the longer time required for the narrower split peak structure to
emerge from the previous structure and to become fully formed. The first time
can be measured by the gross rise time of the conductance, which does not
substantially change later while the split peaks are forming. The second time
characterizes the decay rate of the small split Kondo peak (SKP) oscillations
in the conductance, which may provide a method of experimental access to it.
This latter timescale is accessible via linear response from the steady
stateand appears to be related to the scale identified in that manner [A.
Rosch, J. Kroha, and P. Wolfle, Phys. Rev. Lett. 87, 156802 (2001)].Comment: Revtex with 15 eps figures. Compiles to 11 page
- …