14,858 research outputs found

    Stabilization of Quantum Spin Hall Effect by Designed Removal of Time-Reversal Symmetry of Edge States

    Full text link
    The quantum spin Hall (QSH) effect is known to be unstable to perturbations violating time-reversal symmetry. We show that creating a narrow ferromagnetic (FM) region near the edge of a QSH sample can push one of the counterpropagating edge states to the inner boundary of the FM region, and leave the other at the outer boundary, without changing their spin polarizations and propagation directions. Since the two edge states are spatially separated into different "lanes", the QSH effect becomes robust against symmetry-breaking perturbations.Comment: 5 pages, 4 figure

    Probing neutrino mass hierarchies and ϕ13\phi_{13} with supernova neutrinos

    Get PDF
    We investigate the feasibility of probing the neutrino mass hierarchy and the mixing angle ϕ13\phi_{13} with the neutrino burst from a future supernova. An inverse power-law density ρrn\rho \sim r^{n} with varying nn is adopted in the analysis as the density profile of a typical core-collapse supernova. The survival probabilities of νe\nu_{e} and νˉe\bar{\nu}_{e} are shown to reduce to two-dimensional functions of nn and ϕ13\phi_{13}. It is found that in the nsin2ϕ13n-\sin^{2} \phi_{13} parameter space, the 3D plots of the probability functions exhibit highly non-trivial structures that are sensitive to the mass hierarchy, the mixing angle ϕ13\phi_{13}, and the value of nn. The conditions that lead to observable differences in the 3D plots are established. With the uncertainty of nn considered, a qualitative analysis of the Earth matter effect is also included.Comment: 16 pages, 3 figures. Ref [11] added, and some typos correcte

    Fast and easy blind deblurring using an inverse filter and PROBE

    Full text link
    PROBE (Progressive Removal of Blur Residual) is a recursive framework for blind deblurring. Using the elementary modified inverse filter at its core, PROBE's experimental performance meets or exceeds the state of the art, both visually and quantitatively. Remarkably, PROBE lends itself to analysis that reveals its convergence properties. PROBE is motivated by recent ideas on progressive blind deblurring, but breaks away from previous research by its simplicity, speed, performance and potential for analysis. PROBE is neither a functional minimization approach, nor an open-loop sequential method (blur kernel estimation followed by non-blind deblurring). PROBE is a feedback scheme, deriving its unique strength from the closed-loop architecture rather than from the accuracy of its algorithmic components

    Palatini Formalism of 5-Dimensional Kaluza-Klein Theory

    Full text link
    The Einstein field equations can be derived in nn dimensions (n>2n>2) by the variations of the Palatini action. The Killing reduction of 5-dimensional Palatini action is studied on the assumption that pentads and Lorentz connections are preserved by the Killing vector field. A Palatini formalism of 4-dimensional action for gravity coupled to a vector field and a scalar field is obtained, which gives exactly the same fields equations in Kaluza-Klein theory.Comment: 10 page

    Octet Quark Contents from SU(3) Flavor Symmetry

    Full text link
    With the parametrization of parton distribution functions (PDFs) of the proton by Soffer \textit{et al.}, we extend the valence quark contents to other octet baryons by utilizing SU(3) flavor symmetry. We find the method practically useful. Fragmentation functions (FFs) are further obtained through the phenomenological Gribov-Lipatov relation at the x1x \to 1 region. Our results are compared with different models, and these different predictions can be discriminated by upcoming experiments.Comment: 6 pages, 5 figures, final version for journal publicatio

    Dry-out CHF correlation for R134a flow boiling in a horizontal helically-coiled tube

    Get PDF
    An experimental study was carried out to investigate the R134a dry-out critical heat flux (CHF) characteristics in a horizontal helically-coiled tube. The test section was heated uniformly by DC high-power source, and its geometrical parameters are the outer diameter of 10 mm, inner diameter of 8.4 mm, coil diameter of 300 mm, helical pitch of 75 mm and valid heated length of 1.89 m. The experimental parameters are the outlet pressures of 0.30–0.95 MPa, mass fluxes of 60–500 kg m 2 s 1, inlet qualities of 0.36–0.35 and heat fluxes of 7.0 103–5.0 104 Wm 2. A method based on Agilent BenchLink Data Logger Pro was developed to determine the occurrence of CHF with a total of 68 T-type thermocouples (0.2 mm) set along the tube for accurate temperature measurement. The characteristics of wall temperatures and the parametric effect on dry-out CHF showed that temperature would jump abruptly at the point of CHF, which usually started to form at the front and offside (270 and 90 ) of the outlet crosssection. The CHF values decrease nearly linearly with increasing inlet qualities, while they decrease more acutely with increasing critical qualities, especially under larger mass flux conditions. The mass flux has a positive effect on CHF enhancement, but the pressure has negative one. A new dimensionless correlation was developed to estimate dry-out CHF of R134a flow boiling in horizontal helically-coiled tubes under current experimental conditions and compared to calculated results from Bowring and Shah correlations

    Echo Emission From Dust Scattering and X-Ray Afterglows of Gamma-Ray Bursts

    Full text link
    We investigate the effect of X-ray echo emission in gamma-ray bursts (GRBs). We find that the echo emission can provide an alternative way of understanding X-ray shallow decays and jet breaks. In particular, a shallow decay followed by a "normal" decay and a further rapid decay of X-ray afterglows can be together explained as being due to the echo from prompt X-ray emission scattered by dust grains in a massive wind bubble around a GRB progenitor. We also introduce an extra temporal break in the X-ray echo emission. By fitting the afterglow light curves, we can measure the locations of the massive wind bubbles, which will bring us closer to finding the mass loss rate, wind velocity, and the age of the progenitors prior to the GRB explosions.Comment: 25 pages, 3 figures, 2 tables. Accepted for publication in Ap

    On the Construction of Correlation Functions for the Integrable Supersymmetric Fermion Models

    Full text link
    We review the recent progress on the construction of the determinant representations of the correlation functions for the integrable supersymmetric fermion models. The factorizing FF-matrices (or the so-called FF-basis) play an important role in the construction. In the FF-basis, the creation (and the annihilation) operators and the Bethe states of the integrable models are given in completely symmetric forms. This leads to the determinant representations of the scalar products of the Bethe states for the models. Based on the scalar products, the determinant representations of the correlation functions may be obtained. As an example, in this review, we give the determinant representations of the two-point correlation function for the \gl (i.e. q-deformed) supersymmetric t-J model. The determinant representations are useful for analysing physical properties of the integrable models in the thermodynamical limit.Comment: Latex file, 42 pages. Invited review article for Int. J. Mod. Phys. B; V2: Two references added, mionor typos correcte

    Transient currents and universal timescales for a fully time-dependent quantum dot in the Kondo regime

    Full text link
    Using the time-dependent non-crossing approximation, we calculate the transient response of the current through a quantum dot subject to a finite bias when the dot level is moved suddenly into a regime where the Kondo effect is present. After an initial small but rapid response, the time-dependent conductance is a universal function of the temperature, bias, and inverse time, all expressed in units of the Kondo temperature. Two timescales emerge: the first is the time to reach a quasi-metastable point where the Kondo resonance is formed as a broad structure of half-width of the order of the bias; the second is the longer time required for the narrower split peak structure to emerge from the previous structure and to become fully formed. The first time can be measured by the gross rise time of the conductance, which does not substantially change later while the split peaks are forming. The second time characterizes the decay rate of the small split Kondo peak (SKP) oscillations in the conductance, which may provide a method of experimental access to it. This latter timescale is accessible via linear response from the steady stateand appears to be related to the scale identified in that manner [A. Rosch, J. Kroha, and P. Wolfle, Phys. Rev. Lett. 87, 156802 (2001)].Comment: Revtex with 15 eps figures. Compiles to 11 page
    corecore