134,094 research outputs found

    Break-up mechanisms in heavy ion collisions at low energies

    Full text link
    We investigate reaction mechanisms occurring in heavy ion collisions at low energy (around 20 MeV/u). In particular, we focus on the competition between fusion and break-up processes (Deep-Inelastic and fragmentation) in semi-peripheral collisions, where the formation of excited systems in various conditions of shape and angular momentum is observed. Adopting a Langevin treatment for the dynamical evolution of the system configuration, described in terms of shape observables such as quadrupole and octupole moments, we derive fusion/fission probabilities, from which one can finally evaluate the corresponding fusion and break-up cross sections. The dependence of the results on shape, angular momentum and excitation energy is discussed.Comment: submitted to Physical Review

    Pancreatic cystosis in cystic fibrosis. Sometimes a bike ride can help you decide

    Get PDF
    Pancreatic cystosis (PC) is an uncommon manifestation of pancreas involvement in cystic fibrosis (CF), characterized by the presence of multiple macrocysts partially or completely replacing pancreas. Only few reports are available from literature and management (surgery vs follow up) is commonly based on the presence of symptoms or complications due to local mass effect, although evidence-based recommendations are still not available. We here report the case of a young adult CF patient with PC, in which cardiopulmonary exercise testing (CPET) provided important information to be integrated to the radiological finding of inferior vena cava compression by the multicystic pancreas complex. Through the analysis of oxygen kinetic cardiodynamic phase pattern, CPET may be helpful to safely exclude significant mass effects on blood venous return and to improve the decision-making process on whether to consider surgery or not in patients with PC

    Run-and-tumble particles in speckle fields

    Full text link
    The random energy landscapes developed by speckle fields can be used to confine and manipulate a large number of micro-particles with a single laser beam. By means of molecular dynamics simulations, we investigate the static and dynamic properties of an active suspension of swimming bacteria embedded into speckle patterns. Looking at the correlation of the density fluctuations and the equilibrium density profiles, we observe a crossover phenomenon when the forces exerted by the speckles are equal to the bacteria's propulsion

    Effective run-and-tumble dynamics of bacteria baths

    Full text link
    {\it E. coli} bacteria swim in straight runs interrupted by sudden reorientation events called tumbles. The resulting random walks give rise to density fluctuations that can be derived analytically in the limit of non interacting particles or equivalently of very low concentrations. However, in situations of practical interest, the concentration of bacteria is always large enough to make interactions an important factor. Using molecular dynamics simulations, we study the dynamic structure factor of a model bacterial bath for increasing values of densities. We show that it is possible to reproduce the dynamics of density fluctuations in the system using a free run-and-tumble model with effective fitting parameters. We discuss the dependence of these parameters, e.g., the tumbling rate, tumbling time and self-propulsion velocity, on the density of the bath

    High loop renormalization constants for Wilson fermions/Symanzik improved gauge action

    Full text link
    We present the current status of our computation of quark bilinear renormalization constants for Wilson fermions and Symanzik improved gauge action. Computations are performed in Numerical Stochastic Perturbation Theory. Volumes range from 10^4 to 32^4. Renormalization conditions are those of the RI'-MOM scheme, imposed at different values of the physical scale. Having measurements available at several momenta, irrelevant effects are taken into account by means of hypercubic symmetric Taylor expansions. Finite volumes effects are assessed repeating the computations at different lattice sizes. In this way we can extrapolate our results to the continuum limit, in infinite volume.Comment: 8 pages, 3 figures, talk presented at the 27th International Symposium on Lattice Field Theory (Lattice 2009), Beijing, China, 26-31 Jul 200
    • …
    corecore