10,238 research outputs found

    Finite geometry models of electric field noise from patch potentials in ion traps

    Full text link
    We model electric field noise from fluctuating patch potentials on conducting surfaces by taking into account the finite geometry of the ion trap electrodes to gain insight into the origin of anomalous heating in ion traps. The scaling of anomalous heating rates with surface distance, dd, is obtained for several generic geometries of relevance to current ion trap designs, ranging from planar to spheroidal electrodes. The influence of patch size is studied both by solving Laplace's equation in terms of the appropriate Green's function as well as through an eigenfunction expansion. Scaling with surface distance is found to be highly dependent on the choice of geometry and the relative scale between the spatial extent of the electrode, the ion-electrode distance, and the patch size. Our model generally supports the d4d^{-4} dependence currently found by most experiments and models, but also predicts geometry-driven deviations from this trend

    Elementary Particles of Conventional Field Theory as Regge Poles. IV

    Get PDF
    The usual field theory of spin 0 "nucleons" coupled to vector mesons (or heavy photons) is studied in order to find out whether the nucleon lies on a Regge trajectory. Photon-nucleon scattering is examined, to each order in the coupling constant, with the highest power of ln cosθ retained. It is found that a suitable Regge trajectory is generated, but that the nucleon does not lie on it. The nucleon pole term in the scattering amplitude corresponds to a fixed singularity in angular momentum. The spin 0 "nucleon" thus behaves differently from a particle of spin ½

    Loss of star forming gas in SDSS galaxies

    Full text link
    Using the star formation rates from the SDSS galaxy sample, extracted using the MOPED algorithm, and the empirical Kennicutt law relating star formation rate to gas density, we calculate the time evolution of the gas fraction as a function of the present stellar mass. We show how the gas-to-stars ratio varies with stellar mass, finding good agreement with previous results for smaller samples at the present epoch. For the first time we show clear evidence for progressive gas loss with cosmic epoch, especially in low-mass systems. We find that galaxies with small stellar masses have lost almost all of their cold baryons over time, whereas the most massive galaxies have lost little. Our results also show that the most massive galaxies have evolved faster and turned most of their gas into stars at an early time, thus strongly supporting a downsizing scenario for galaxy evolution.Comment: 29 pages, 9 figures, ApJ, accepte

    Application of dispersion relations to low-energy meson-nucleon scattering

    Get PDF
    Relativistic dispersion relations are used to derive equations for low-energy S-, P-, and D-wave meson-nucleon scattering under the assumption that the (3,3) resonance dominates the dispersion integrals. The P-wave equations so obtained differ only slightly from those of the static fixed-source theory. The conclusions of the static theory are re-examined in the light of their new derivation

    A triclinic polymorph of benzanilide : disordered molecules form hydrogen-bonded chains

    Get PDF
    Peer reviewedPublisher PD

    Diffraction and the Pomeron

    Full text link
    Recent experimental results on inclusive diffractive scattering and on exclusive vector meson production are reviewed. The dynamical picture of hard diffraction emerging in perturbative QCD is highlighted.Comment: 25 pages, 21 postscript figures, contribution to the XIX International Symposium on Lepton and Photon Interactions at High Energies, Stanford University, August 9-14, 199

    Laser-induced charging of microfabricated ion traps

    Full text link
    Electrical charging of metal surfaces due to photoelectric generation of carriers is of concern in trapped ion quantum computation systems, due to the high sensitivity of the ions' motional quantum states to deformation of the trapping potential. The charging induced by typical laser frequencies involved in doppler cooling and quantum control is studied here, with microfabricated surface electrode traps made of aluminum, copper, and gold, operated at 6 K with a single Sr+^+ ion trapped 100 μ\mum above the trap surface. The lasers used are at 370, 405, 460, and 674 nm, and the typical photon flux at the trap is 1014^{14} photons/cm2^2/sec. Charging is detected by monitoring the ion's micromotion signal, which is related to the number of charges created on the trap. A wavelength and material dependence of the charging behavior is observed: lasers at lower wavelengths cause more charging, and aluminum exhibits more charging than copper or gold. We describe the charging dynamic based on a rate equation approach.Comment: 8 pages, 8 figure
    corecore