15,930 research outputs found

    Shear-Improved Smagorinsky Model for Large-Eddy Simulation of Wall-Bounded Turbulent Flows

    Get PDF
    A shear-improved Smagorinsky model is introduced based on recent results concerning shear effects in wall-bounded turbulence by Toschi et al. (2000). The Smagorinsky eddy-viscosity is modified subtracting the magnitude of the mean shear from the magnitude of the instantaneous resolved strain-rate tensor. This subgrid-scale model is tested in large-eddy simulations of plane-channel flows at two different Reynolds numbers. First comparisons with the dynamic Smagorinsky model and direct numerical simulations, including mean velocity, turbulent kinetic energy and Reynolds stress profiles, are shown to be extremely satisfactory. The proposed model, in addition of being physically sound, has a low computational cost and possesses a high potentiality of generalization to more complex non-homogeneous turbulent flows.Comment: 10 pages, 6 figures, added some reference

    Diffraction microstrain in nanocrystalline solids under load - heterogeneous medium approach

    Full text link
    This is an account of the computation of X-ray microstrain in a polycrystal with anisotropic elasticity under uniaxial external load. The results have been published in the article "Microstrain in nanocrystalline solids under load by virtual diffraction", at Europhysics Letters 89, 66002 (2010). The present information was submitted to Europhysics Letters as part of the manuscript package, and was available to the reviewers who recommended the paper for publication.Comment: Supporting online material for J. Markmann, D. Bachurin, L.-H. Shao, P. Gumbsch, J. Weissm\"uller, Microstrain in nanocrystalline solids under load by virtual diffraction, Europhys. Lett. 89, 66002 (2010

    Spectral imbalance and the normalized dissipation rate of turbulence

    Full text link
    The normalized turbulent dissipation rate CϵC_\epsilon is studied in decaying and forced turbulence by direct numerical simulations, large-eddy simulations, and closure calculations. A large difference in the values of CϵC_\epsilon is observed for the two types of turbulence. This difference is found at moderate Reynolds number, and it is shown that it persists at high Reynolds number, where the value of CϵC_\epsilon becomes independent of the Reynolds number, but is still not unique. This difference can be explained by the influence of the nonlinear cascade time that introduces a spectral disequilibrium for statistically nonstationary turbulence. Phenomenological analysis yields simple analytical models that satisfactorily reproduce the numerical results. These simple spectral models also reproduce and explain the increase of CϵC_\epsilon at low Reynolds number that is observed in the simulations

    Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes

    Full text link
    In this paper, we study the phase structure and equilibrium state space geometry of charged topological Gauss-Bonnet black holes in dd-dimensional anti-de Sitter spacetime. Several critical points are obtained in the canonical ensemble, and the critical phenomena and critical exponents near them are examined. We find that the phase structures and critical phenomena drastically depend on the cosmological constant Λ\Lambda and dimensionality dd. The result also shows that there exists an analogy between the black hole and the van der Waals liquid gas system. Moreover, we explore the phase transition and possible property of the microstructure using the state space geometry. It is found that the Ruppeiner curvature diverges exactly at the points where the heat capacity at constant charge of the black hole diverges. This black hole is also found to be a multiple system, i.e., it is similar to the ideal gas of fermions in some range of the parameters, while to the ideal gas of bosons in another range.Comment: 17 pages, 8 figures, 3 table

    Back-electron transfer suppresses the periodic length dependence of DNA-mediated charge transport across adenine tracts

    Get PDF
    DNA-mediated charge transport (CT) is exquisitely sensitive to the integrity of the bridging π-stack and is characterized by a shallow distance dependence. These properties are obscured by poor coupling between the donor/acceptor pair and the DNA bridge, or by convolution with other processes. Previously, we found a surprising periodic length dependence for the rate of DNA-mediated CT across adenine tracts monitored by 2-aminopurine fluorescence. Here we report a similar periodicity by monitoring N2-cyclopropylguanosine decomposition by rhodium and anthraquinone photooxidants. Furthermore, we find that this periodicity is attenuated by consequent back-electron transfer (BET), as observed by direct comparison between sequences that allow and suppress BET. Thus, the periodicity can be controlled by engineering the extent of BET across the bridge. The periodic length dependence is not consistent with a periodicity predicted by molecular wire theory but is consistent with a model where multiples of four to five base pairs form an ideal CT-active length of a bridging adenine domain

    Competitive contract design in a retail supply chain under demand uncertainty

    Get PDF
    This article studies the design of contracts involving a single retailer and multiple competing manufacturers who supply substitutable products. We consider a retail context in which contracts with manufacturers are negotiated relatively infrequently and signed before the demand environment is known, and the retail prices are determined when the demand is known. We develop a Stackelberg model to study the retailer's product selection and pricing decisions and the manufacturers' contract design decisions. We show that it is optimal for each manufacturer to offer a contract with nonlinear prices so that total payments are the total production cost plus a fixed additional cost. In the case of two manufacturers this result allows us to characterize an equilibrium in which the retailer's choice maximizes the supply chain profit, each manufacturer makes a profit equal to its marginal contribution to the supply chain, and the retailer takes the remaining profit. We also find that while increasing demand correlation always benefits the retailer, it benefits the manufacturers only when the production costs are convex. In an extension it is found that our equilibrium continues to hold when the retailer's reservation profit is below a threshold, but the competition dynamics may change when the reservation profit is above the threshold. Finally, we show that the equilibrium results remain true for the case with more than two manufacturers under a submodularity property, which holds in the case of quadratic costs and linear demand

    Note on a new fundamental length scale ll instead of the Newtonian constant GG

    Full text link
    The newly proposed entropic gravity suggests gravity as an emergent force rather than a fundamental one. In this approach, the Newtonian constant GG does not play a fundamental role any more, and a new fundamental constant is required to replace its position. This request also arises from some philosophical considerations to contemplate the physical foundations for the unification of theories. We here consider the suggestion to derive GG from more fundamental quantities in the presence of a new fundamental length scale ll, which is suspected to originate from the structure of quantum space-time, and can be measured directly from Lorentz-violating observations. Our results are relevant to the fundamental understanding of physics, and more practically, of natural units, as well as explanations of experimental constraints in searching for Lorentz violation.Comment: 10 latex pages, final version for journal publicatio

    Probing neutrino mass hierarchies and ϕ13\phi_{13} with supernova neutrinos

    Get PDF
    We investigate the feasibility of probing the neutrino mass hierarchy and the mixing angle ϕ13\phi_{13} with the neutrino burst from a future supernova. An inverse power-law density ρrn\rho \sim r^{n} with varying nn is adopted in the analysis as the density profile of a typical core-collapse supernova. The survival probabilities of νe\nu_{e} and νˉe\bar{\nu}_{e} are shown to reduce to two-dimensional functions of nn and ϕ13\phi_{13}. It is found that in the nsin2ϕ13n-\sin^{2} \phi_{13} parameter space, the 3D plots of the probability functions exhibit highly non-trivial structures that are sensitive to the mass hierarchy, the mixing angle ϕ13\phi_{13}, and the value of nn. The conditions that lead to observable differences in the 3D plots are established. With the uncertainty of nn considered, a qualitative analysis of the Earth matter effect is also included.Comment: 16 pages, 3 figures. Ref [11] added, and some typos correcte

    LATOR Covariance Analysis

    Full text link
    We present results from a covariance study for the proposed Laser Astrometric Test of Relativity (LATOR) mission. This mission would send two laser-transmitter spacecraft behind the Sun and measure the relative gravitational light bending of their signals using a hundred-meter-baseline optical interferometer to be constructed on the International Space Station. We assume that each spacecraft is equipped with a <1.9×1013ms2Hz1/2 < 1.9 \times 10^{-13} \mathrm{m} \mathrm{s}^2 \mathrm{Hz}^{-1/2} drag-free system and assume approximately one year of data. We conclude that the observations allow a simultaneous determination of the orbit parameters of the spacecraft and of the Parametrized Post-Newtonian (PPN) parameter γ\gamma with an uncertainty of 2.4×1092.4 \times 10^{-9}. We also find a 6×1096 \times 10^{-9} determination of the solar quadrupole moment, J2J_2, as well as the first measurement of the second-order post-PPN parameter δ\delta to an accuracy of about 10310^{-3}.Comment: 9 pages, 3 figures. first revision: minor changes to results. Second revision: additional discussion of orbit modelling and LATOR drag-free system requirement feasibility. Added references to tables I and V (which list PPN parameter uncertainties), removed word from sentence in Section III. 3rd revision: removed 2 incorrect text fragments (referring to impact parameter as distance of closest approach) and reference to upcoming publication of ref. 2, removed spurious gamma from eq. 1 - Last error is still in cqg published versio

    Scalar form-factor of the proton with light-cone QCD sum rules

    Full text link
    In this article, we calculate the scalar form-factor of the proton in the framework of the light-cone QCD sum rules approach with the three valence quark light-cone distribution amplitudes up to twist-6, and observe the scalar form-factor σ(t=Q2)\sigma(t=-Q^2) at intermediate and large momentum transfers Q2>2GeV2Q^2> 2GeV^2 has significant contributions from the end-point (or soft) terms. The numerical values for the σ(t=Q2)\sigma(t=-Q^2) are compatible with the calculations from the chiral quark model and lattice QCD at the region Q2>2GeV2Q^2>2GeV^2.Comment: 18 pages, 7 figures, revised versio
    corecore