16,875 research outputs found

    A topological look at the quantum spin Hall state

    Full text link
    We propose a topological understanding of the quantum spin Hall state without considering any symmetries, and it follows from the gauge invariance that either the energy gap or the spin spectrum gap needs to close on the system edges, the former scenario generally resulting in counterpropagating gapless edge states. Based upon the Kane-Mele model with a uniform exchange field and a sublattice staggered confining potential near the sample boundaries, we demonstrate the existence of such gapless edge states and their robust properties in the presence of impurities. These gapless edge states are protected by the band topology alone, rather than any symmetries.Comment: 5 pages, 4 figure

    Quantum Hall Effect in Thin Films of Three-Dimensional Topological Insulators

    Full text link
    We show that a thin film of a three-dimensional topological insulator (3DTI) with an exchange field is a realization of the famous Haldane model for quantum Hall effect (QHE) without Landau levels. The exchange field plays the role of staggered fluxes on the honeycomb lattice, and the hybridization gap of the surface states is equivalent to alternating on-site energies on the AB sublattices. A peculiar phase diagram for the QHE is predicted in 3DTI thin films under an applied magnetic field, which is quite different from that either in traditional QHE systems or in graphene.Comment: 4 pages, 4 figure

    Thermal fluctuations and anomalous elasticity of homogeneous nematic elastomers

    Full text link
    We present a unified formulation of a rotationally invariant nonlinear elasticity for a variety of spontaneously anisotropic phases, and use it to study thermal fluctuations in nematic elastomers and spontaneously anisotropic gels. We find that in a thermodynamic limit homogeneous nematic elastomers are universally incompressible, are characterized by a universal ratio of shear moduli, and exhibit an anomalous elasticity controlled by a nontrivial low temperature fixed point perturbative in D=3-epsilon dimensions. In three dimensions, we make predictions that are asymptotically exact.Comment: 4 RevTeX pgs,,submitted to Europhysics Letter

    Kosterlitz-Thouless transition in disordered two-dimensional topological insulators

    Full text link
    The disorder-driven metal-insulator transition in the quantum spin Hall systems is studied by scaling analysis of the Thouless conductance gg. Below a critical disorder strength, the conductance is independent of the sample size MM, an indication of critically delocalized electron states. The calculated beta function β=dlng/dlnM\beta=d\ln g/d\ln M indicates that the metal-insulator transition is Kosterlitz-Thouless (KT) type, which is characterized by bounding and unbounding of vortex-antivortex pairs of the local currents. The KT like metal-insulator transition is a basic characteristic of the quantum spin Hall state, being independent of the time-reversal symmetry.Comment: 5 pages, 4 figure

    Stabilization of Quantum Spin Hall Effect by Designed Removal of Time-Reversal Symmetry of Edge States

    Full text link
    The quantum spin Hall (QSH) effect is known to be unstable to perturbations violating time-reversal symmetry. We show that creating a narrow ferromagnetic (FM) region near the edge of a QSH sample can push one of the counterpropagating edge states to the inner boundary of the FM region, and leave the other at the outer boundary, without changing their spin polarizations and propagation directions. Since the two edge states are spatially separated into different "lanes", the QSH effect becomes robust against symmetry-breaking perturbations.Comment: 5 pages, 4 figure

    Magnetothermoelectric transport properties in phosphorene

    Full text link
    We numerically study the electrical and thermoelectric transport properties in phosphorene in the presence of both a magnetic field and disorder. The quantized Hall conductivity is similar to that of a conventional two-dimensional electron gas, but the positions of all the Hall plateaus shift to the left due to the spectral asymmetry, in agreement with the experimental observations. The thermoelectric conductivity and Nernst signal exhibit remarkable anisotropy, and the thermopower is nearly isotropic. When a bias voltage is applied between top and bottom layers of phosphorene, both thermopower and Nernst signal are enhanced and their peak values become large.Comment: 8 pages, 9 figure
    corecore