6,787 research outputs found

    Oscillatons revisited

    Get PDF
    In this paper, we study some interesting properties of a spherically symmetric oscillating soliton star made of a real time-dependent scalar field which is called an oscillaton. The known final configuration of an oscillaton consists of a stationary stage in which the scalar field and the metric coefficients oscillate in time if the scalar potential is quadratic. The differential equations that arise in the simplest approximation, that of coherent scalar oscillations, are presented for a quadratic scalar potential. This allows us to take a closer look at the interesting properties of these oscillating objects. The leading terms of the solutions considering a quartic and a cosh scalar potentials are worked in the so called stationary limit procedure. This procedure reveals the form in which oscillatons and boson stars may be related and useful information about oscillatons is obtained from the known results of boson stars. Oscillatons could compete with boson stars as interesting astrophysical objects, since they would be predicted by scalar field dark matter models.Comment: 10 pages REVTeX, 10 eps figures. Updated files to match version published in Classical and Quantum Gravit

    Generation of Closed Timelike Curves with Rotating Superconductors

    Get PDF
    The spacetime metric around a rotating SuperConductive Ring (SCR) is deduced from the gravitomagnetic London moment in rotating superconductors. It is shown that theoretically it is possible to generate Closed Timelike Curves (CTC) with rotating SCRs. The possibility to use these CTC's to travel in time as initially idealized by G\"{o}del is investigated. It is shown however, that from a technology and experimental point of view these ideas are impossible to implement in the present context.Comment: 9 pages. Submitted to Classical and Quantum Gravit

    Quintessence and Scalar Dark Matter in the Universe

    Full text link
    Continuing with previous works, we present a cosmological model in which dark matter and dark energy are modeled by scalar fields Φ\Phi and Ψ\Psi, respectively, endowed with the scalar potentials V(Φ)=Vo[cosh(λκoΦ)1]V(\Phi)=V_{o}[ \cosh {(\lambda \sqrt{\kappa_{o}}\Phi)}-1] and V~(Ψ)=Vo~[sinh(ακoΨ)]β\tilde{V}(\Psi)=\tilde{V_{o}}[ \sinh {(\alpha \sqrt{\kappa_{o}}\Psi)}] ^{\beta}. This model contains 95% of scalar field. We obtain that the scalar dark matter mass is mΦ1026eV.m_{\Phi}\sim 10^{-26}eV. The solution obtained allows us to recover the success of the standard CDM. The implications on the formation of structure are reviewed. We obtain that the minimal cutoff radio for this model is rc1.2kpc.r_{c}\sim 1.2 kpc.Comment: 4 pages REVTeX, 3 eps color figures. Minor changes and references updated. To appear in Classical and Quantum Gravity as a Letter to the Editor. More information at http://www.fis.cinvestav.mx/~siddh/PHI

    Scalar Field Dark Matter: head-on interaction between two structures

    Get PDF
    In this manuscript we track the evolution of a system consisting of two self-gravitating virialized objects made of a scalar field in the newtonian limit. The Schr\"odinger-Poisson system contains a potential with self-interaction of the Gross-Pitaevskii type for Bose Condensates. Our results indicate that solitonic behavior is allowed in the scalar field dark matter model when the total energy of the system is positive, that is, the two blobs pass through each other as should happen for solitons; on the other hand, there is a true collision of the two blobs when the total energy is negative.Comment: 8 revtex pages, 11 eps figures. v2 matches the published version. v2=v1+ref+minor_change

    Scalar-Tensor theories from Λ(ϕ)\Lambda(\phi) Plebanski gravity

    Full text link
    We study a modification of the Plebanski action, which generically corresponds to a bi-metric theory of gravity, and identify a subclass which is equivalent to the Bergmann-Wagoner-Nordtvedt class of scalar-tensor theories. In this manner, scalar-tensor theories are displayed as constrained BF theories. We find that in this subclass, there is no need to impose reality of the Urbantke metrics, as also the theory with real bivectors is a scalar-tensor theory with a real Lorentzian metric. Furthermore, while under the former reality conditions instabilities can arise from a wrong sign of the scalar mode kinetic term, we show that such problems do not appear if the bivectors are required to be real. Finally, we discuss how matter can be coupled to these theories. The phenomenology of scalar field dark matter arises naturally within this framework.Comment: 21 page

    Quantum mechanical counterpart of nonlinear optics

    Get PDF
    Raman-type laser excitation of a trapped atom allows one to realize the quantum mechanical counterpart of phenomena of nonlinear optics, such as Kerr-type nonlinearities, parametric amplification, and multi-mode mixing. Additionally, huge nonlinearities emerge from the interference of the atomic wave function with the laser waves. They lead to a partitioning of the phase space accompanied by a significantly different action of the time evolution in neighboring phase-space zones. For example, a nonlinearly modified coherent "displacement" of the motional quantum state may induce strong amplitude squeezing and quantum interferences.Comment: 6 pages, 4 figures, to be published in Phys. Rev. A 55 (June

    Spherical Scalar Field Halo in Galaxies

    Get PDF
    We study a spherically symmetric fluctuation of scalar dark matter in the cosmos and show that it could be the dark matter in galaxies, provided that the scalar field has an exponential potential whose overall sign is negative and whose exponent is constrained observationally by the rotation velocities of galaxies. The local space-time of the fluctuation contains a three dimensional space-like hypersurface with surplus of angle.Comment: 5 REVTeX pages, no figures. Contains important suggestions provided by the referee. Final version, to appear in Phys. Rev.

    Quantum metrology at the Heisenberg limit with ion traps

    Get PDF
    Sub-Planck phase-space structures in the Wigner function of the motional degree of freedom of a trapped ion can be used to perform weak force measurements with Heisenberg-limited sensitivity. We propose methods to engineer the Hamiltonian of the trapped ion to generate states with such small scale structures, and we show how to use them in quantum metrology applications.Comment: 10 pages, 6 figure

    Quantum-state synthesis of multi-mode bosonic fields: Preparation of arbitrary states of 2-D vibrational motion of trapped ions

    Get PDF
    We present a universal algorithm for an efficient deterministic preparation of an arbitrary two--mode bosonic state. In particular, we discuss in detail preparation of entangled states of a two-dimensional vibrational motion of a trapped ion via a sequence of laser stimulated Raman transitions. Our formalism can be generalized for multi-mode bosonic fields. We examine stability of our algorithm with respect to a technical noise.Comment: 8 pages, revtex, including 2 ps-figures, section about physical implementation added, references updated, submitted to Phys. Rev. A, computer program available at http://www.savba.sk/sav/inst/fyzi/qo

    Scalar Field as Dark Matter in the Universe

    Get PDF
    We investigate the hypothesis that the scalar field is the dark matter and the dark energy in the Cosmos, wich comprises about 95% of the matter of the Universe. We show that this hypothesis explains quite well the recent observations on type Ia supernovae.Comment: 4 pages REVTeX, 1 eps figure. Minor changes. To appear in Classical and Quantum Gravit
    corecore