949 research outputs found

    Membership and Multiplicity among Very Low-Mass Stars and Brown Dwarfs in the Pleiades Cluster

    Get PDF
    We present near-infrared photometry and optical spectroscopy of very low-mass stars and brown dwarf candidates in the Pleiades open cluster. The membership status of these objects is assessed. Eight objects out of 45 appear to be non-members. A search for companions among 34 very low-mass Pleiades members (M≀\le0.09 M⊙_\odot) in high-spatial resolution images obtained with the Hubble Space Telescope and the adaptive optics system of the Canada-France-Hawaii telescope produced no resolved binaries with separations larger than 0.2 arcsec (a ~ 27 AU; P ~ 444 years). Nevertheless, we find evidence for a binary sequence in the color-magnitude diagrams, in agreement with the results of Steele & Jameson (1995) for higher mass stars. We compare the multiplicity statistics of the Pleiades very low-mass stars and brown dwarfs with that of G and K-type main sequence stars in the solar neighborhood (Duquennoy & Mayor 1991). We find that there is some evidence for a deficiency of wide binary systems (separation >27 AU) among the Pleiades very low-mass members. We briefly discuss how this result can fit with current scenarios of brown dwarf formation. We correct the Pleiades substellar mass function for the contamination of cluster non-members found in this work. We find a contamination level of 33% among the brown dwarf candidates identified by Bouvier et al. (1998). Assuming a power law IMF across the substellar boundary, we find a slope dN/dM ~ M^{-0.53}, implying that the number of objects per mass bin is still rising but the contribution to the total mass of the cluster is declining in the brown dwarf regime.Comment: to be published in The Astrophysical Journa

    A New Pleiades Member at the Lithium Substellar Boundary

    Full text link
    We present the discovery of an object in the Pleiades open cluster, named Teide 2, with optical and infrared photometry which place it on the cluster sequence slightly below the expected substellar mass limit. We have obtained low- and high-resolution spectra that allow us to determine its spectral type (M6), radial velocity and rotational broadening; and to detect Hα_\alpha in emission and Li I 670.8 nm in absorption. All the observed properties strongly support the membership of Teide 2 into the Pleiades. This object has an important role in defining the reappearance of lithium below the substellar limit in the Pleiades. The age of the Pleiades very low-mass members based on their luminosities and absence or presence of lithium is constrained to be in the range 100--120 Myr.Comment: 17 pages, 3 figure

    Brown Dwarfs in the Pleiades Cluster Confirmed by the Lithium Test

    Full text link
    We present 10 m Keck spectra of the two Pleiades brown dwarfs Teide 1 and Calar 3 showing a clear detection of the 670.8 nm Li resonance line. In Teide 1, we have also obtained evidence for the presence of the subordinate line at 812.6 nm. A high Li abundance (log N(Li) >= 2.5), consistent with little if any depletion, is inferred from the observed lines. Since Pleiades brown dwarfs are unable to burn Li the significant preservation of this fragile element confirms the substellar nature of our two objects. Regardless of their age, their low luminosities and Li content place Teide 1 and Calar 3 comfortably in the genuine brown dwarf realm. Given the probable age of the Pleiades cluster, their masses are estimated at 55 +- 15 Jupiter masses.Comment: 14 pages gzipped and uuencoded. Figures are included. Also available at http://www.iac.es/. Accepted for publication in ApJ Letter

    The substellar mass function in sigma Orionis. II. Optical, near-infrared and IRAC/Spitzer photometry of young cluster brown dwarfs and planetary-mass objects

    Full text link
    We investigate the mass function in the substellar domain down to a few Jupiter masses in the young sigma Orionis open cluster (3+/-2 Ma, d = 360^+70_-60 pc). We have performed a deep IJ-band search, covering an area of 790 arcmin^2 close to the cluster centre. This survey was complemented with an infrared follow-up in the HKs- and Spitzer 3.6-8.0 mum-bands. Using colour-magnitude diagrams, we have selected 49 candidate cluster members in the magnitude interval 16.1 mag < I < 23.0 mag. Accounting for flux excesses at 8.0 mum and previously known spectral features of youth, 30 objects are bona fide cluster members. Four are first identified from our optical-near infrared data. Eleven have most probable masses below the deuterium burning limit and are classified as planetary-mass object candidates. The slope of the substellar mass spectrum (Delta N / Delta M = a M^-alpha) in the mass interval 0.11 Msol M < 0.006 Msol is alpha = +0.6+/-0.2. Any opacity mass-limit, if these objects form via fragmentation, may lie below 0.006 Msol. The frequency of sigma Orionis brown dwarfs with circumsubstellar discs is 47+/-15 %. The continuity in the mass function and in the frequency of discs suggests that very low-mass stars and substellar objects, even below the deuterium-burning mass limit, may share the same formation mechanism.Comment: Accepted for publication in A&A (12/04/2007). It has not been edited for language ye

    Low-resolution spectroscopy and spectral energy distributions of selected sources towards sigma Orionis

    Get PDF
    Aims: We investigated in detail nine sources in the direction of the young sigma Orionis cluster, which is considered a unique site for studying stellar and substellar formation. The nine sources were selected because of some peculiar properties, such as extremely red infrared colours or too strong Halpha emission for their blue optical colours. Methods: We took high-quality, low-resolution spectroscopy (R ~ 500) of the nine targets with ALFOSC at the Nordic Optical Telescope. We also re-analyzed [24]-band photometry from MIPS/Spitzer and compiled the best photometry available at the ViJHKs passbands and the four IRAC/Spitzer channels for constructing accurate spectral energy distributions covering from 0.55 to 24 mum. Results: The nine targets were classified into: one Herbig Ae/Be star with a scatterer edge-on disc, two G-type stars, one X-ray flaring, early-M, young star with chromospheric Halpha emission, one very low-mass, accreting, young spectroscopic binary, two young objects at the brown dwarf boundary with the characteristics of classical T Tauri stars, and two emission-line galaxies, one undergoing star formation, and another one whose spectral energy distribution is dominated by an active galactic nucleus. Besides, we discover three infrared sources associated to overdensities in a cold cloud in the cluster centre. Conclusions: Low-resolution spectroscopy and spectral energy distributions are a vital tool for measuring the physical properties and the evolution of young stars and candidates in the sigma Orionis cluster.Comment: Accepted for publication in A&

    New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools: II. SDSS DR7 vs UKIDSS LAS DR6, SDSS DR7 vs UKIDSS LAS DR8, SDSS DR9 vs UKIDSS LAS DR10, and SDSS DR7 vs 2MASS

    Full text link
    We aim at developing an efficient method to search for late-type subdwarfs (metal-depleted dwarfs with spectral types >M5) to improve the current statistics. Our objectives are: improve our knowledge of metal-poor low-mass dwarfs, bridge the gap between the late-M and L types, determine their surface density, and understand the impact of metallicity on the stellar and substellar mass function. We carried out a search cross-matching the SDSS, 2MASS, and UKIDSS using STILTS, Aladin, and Topcat. We considered different photometric and proper motion criteria for our selection. We identified 29 and 71 late-type subdwarf candidates in each cross-correlation over 8826 and 3679 square degrees, respectively. We obtained low-resolution optical spectra for 71 of our candidates with GTC, NOT, and VLT and retrieved spectra for 30 candidates from the SDSS spectroscopic database. We classified 92 candidates based on 101 optical spectra using two methods: spectral indices and comparison with templates of known subdwarfs. We confirmed 86% and 94% of the candidates as late-type subdwarfs from the SDSS vs 2MASS and SDSS vs UKIDSS cross-matches, respectively. These subdwarfs have spectral types ranging between M5 and L0.5 and SDSS magnitudes in the r=19.4-23.3 mag range. Our new late-type M discoveries include 49 subdwarfs, 25 extreme subdwarfs, six ultrasubdwarfs, one subdwarf/extreme subdwarf, and two dwarfs/subdwarfs. We derived a surface density of late-type subdwarfs of 0.040−0.007+0.012^{+0.012}_{-0.007} per square degree in the SDSS DR7 vs UKIDSS LAS DR10 cross-match. We also checked the AllWISE photometry of known and new subdwarfs and found that mid-infrared colours of M subdwarfs do not appear to differ from their solar-metallicity counterparts of similar spectral types. However, the J-W2 and J-W1 colours are bluer for lower metallicity dwarfs. (abstract strongly abridged)Comment: 28 pages, 4 Tables, 10 figures, 1 appendix. Accepted to A&A. Photometry and spectra available in a dedicated archive on late-type subdwarfs at http://svo2.cab.inta-csic.es/vocats/ltsa
    • 

    corecore