1,338 research outputs found
Interference of an Array of Independent Bose-Einstein Condensates
Interference of an array of independent Bose-Einstein condensates, whose
experiment has been performed recently, is theoretically studied in detail.
Even if the number of the atoms in each gas is kept finite and the phases of
the gases are not well defined, interference fringes are observed on each
snapshot. The statistics of the snapshot interference patterns, i.e., the
average fringe amplitudes and their fluctuations (covariance), are computed
analytically, and concise formulas for their asymptotic values for long time of
flight are derived. Processes contributing to these quantities are clarified
and the relationship with the description on the basis of the symmetry-breaking
scenario is revealed.Comment: 13 pages, 3 figure
Anomalous Quartic and Couplings in Collision With Initial Beams and Final State Polarizations
The constraints on the anomalous quartic and
gauge boson couplings are investigated through the processes
and . Considering the
longitudinal and transverse polarization states of the final W or Z boson and
incoming beam polarizations we find 95% confidence level limits on the
anomalous coupling parameters and with an integrated luminosity
of 500 and =0.5, 1 TeV energies. Assuming the
couplings are independent of the
couplings we show that the longitudinal polarization state of the final gauge
boson improves the sensitivity to anomalous couplings by a factor of 2-3
depending on energy and coupling. An extra enhancement in sensitivity by a
factor of 1.3 comes from a set of initial beam polarizations
Enhancement of the transverse non-reciprocal magneto-optical effect
The origin and properties of the transverse non-reciprocal magneto-optical
(nMO) effect were studied. The transverse nMO effect occurs in the case when
light propagates perpendicularly to the magnetic field. It was demonstrated
that light can experience the transverse nMO effect only when it propagates in
the vicinity of a boundary between two materials and the optical field at least
in one material is evanescent. The transverse nMO effect is pronounced in the
cases of surface plasmons and waveguiding modes. The magnitude of the
transverse nMO effect is comparable to or greater than the magnitude of the
longitudinal nMO effect. In the case of surface plasmons propagating at a
boundary between the transition metal and the dielectric it is possible to
magnify the transverse nMO effect and the magneto-optical figure-of-merit may
increase from a few percents to above 100%. The scalar dispersion relation,
which describes the transverse MO effect in cases of waveguide modes and
surface plasmons propagating in a multilayer MO slab, was derived
Lateral Effects in Fermion Antibunching
Lateral effects are analyzed in the antibunching of a beam of free
non-interacting fermions. The emission of particles from a source is
dynamically described in a 3D full quantum field-theoretical framework. The
size of the source and the detectors, as well as the temperature of the source
are taken into account and the behavior of the visibility is scrutinized as a
function of these parameters.Comment: 22 pages, 4 figure
On demand entanglement in double quantum dots via coherent carrier scattering
We show how two qubits encoded in the orbital states of two quantum dots can
be entangled or disentangled in a controlled way through their interaction with
a weak electron current. The transmission/reflection spectrum of each scattered
electron, acting as an entanglement mediator between the dots, shows a
signature of the dot-dot entangled state. Strikingly, while few scattered
carriers produce decoherence of the whole two-dots system, a larger number of
electrons injected from one lead with proper energy is able to recover its
quantum coherence. Our numerical simulations are based on a real-space solution
of the three-particle Schroedinger equation with open boundaries. The computed
transmission amplitudes are inserted in the analytical expression of the system
density matrix in order to evaluate the entanglement.Comment: 20 pages, 5 figure
Loop integration results using numerical extrapolation for a non-scalar integral
Loop integration results have been obtained using numerical integration and
extrapolation. An extrapolation to the limit is performed with respect to a
parameter in the integrand which tends to zero. Results are given for a
non-scalar four-point diagram. Extensions to accommodate loop integration by
existing integration packages are also discussed. These include: using
previously generated partitions of the domain and roundoff error guards.Comment: 4 pages, 3 figures, revised, contribution to ACAT03 (Dec. 2003
LCG MCDB -- a Knowledgebase of Monte Carlo Simulated Events
In this paper we report on LCG Monte Carlo Data Base (MCDB) and software
which has been developed to operate MCDB. The main purpose of the LCG MCDB
project is to provide a storage and documentation system for sophisticated
event samples simulated for the LHC collaborations by experts. In many cases,
the modern Monte Carlo simulation of physical processes requires expert
knowledge in Monte Carlo generators or significant amount of CPU time to
produce the events. MCDB is a knowledgebase mainly dedicated to accumulate
simulated events of this type. The main motivation behind LCG MCDB is to make
the sophisticated MC event samples available for various physical groups. All
the data from MCDB is accessible in several convenient ways. LCG MCDB is being
developed within the CERN LCG Application Area Simulation project
Purification through Zeno-like Measurements
A series of frequent measurements on a quantum system (Zeno-like
measurements) is shown to result in the ``purification'' of another quantum
system in interaction with the former. Even though the measurements are
performed on the former system, their effect drives the latter into a pure
state, irrespectively of its initial (mixed) state, provided certain conditions
are satisfied.Comment: REVTeX4, 4 pages, 1 figure; to be published in Phys. Rev. Lett.
(2003
Bifurcation Phenomenon in a Spin Relaxation
Spin relaxation in a strong-coupling regime (with respect to the spin system)
is investigated in detail based on the spin-boson model in a stochastic limit.
We find a bifurcation phenomenon in temperature dependence of relaxation
constants, which is never observed in the weak-coupling regime. We also discuss
inequalities among the relaxation constants in our model and show the
well-known relation 2\Gamma_T >= \Gamma_L, for example, for a wider parameter
region than before.Comment: REVTeX4, 5 pages, 5 EPS figure
Vertical current induced domain wall motion in MgO-based magnetic tunnel junction with low current densities
Shifting electrically a magnetic domain wall (DW) by the spin transfer
mechanism is one of the future ways foreseen for the switching of spintronic
memories or registers. The classical geometries where the current is injected
in the plane of the magnetic layers suffer from a poor efficiency of the
intrinsic torques acting on the DWs. A way to circumvent this problem is to use
vertical current injection. In that case, theoretical calculations attribute
the microscopic origin of DW displacements to the out-of-plane (field-like)
spin transfer torque. Here we report experiments in which we controllably
displace a DW in the planar electrode of a magnetic tunnel junction by vertical
current injection. Our measurements confirm the major role of the out-of-plane
spin torque for DW motion, and allow to quantify this term precisely. The
involved current densities are about 100 times smaller than the one commonly
observed with in-plane currents. Step by step resistance switching of the
magnetic tunnel junction opens a new way for the realization of spintronic
memristive devices
- …