1,338 research outputs found

    Interference of an Array of Independent Bose-Einstein Condensates

    Full text link
    Interference of an array of independent Bose-Einstein condensates, whose experiment has been performed recently, is theoretically studied in detail. Even if the number of the atoms in each gas is kept finite and the phases of the gases are not well defined, interference fringes are observed on each snapshot. The statistics of the snapshot interference patterns, i.e., the average fringe amplitudes and their fluctuations (covariance), are computed analytically, and concise formulas for their asymptotic values for long time of flight are derived. Processes contributing to these quantities are clarified and the relationship with the description on the basis of the symmetry-breaking scenario is revealed.Comment: 13 pages, 3 figure

    Anomalous Quartic WWγγWW\gamma\gamma and ZZγγZZ\gamma\gamma Couplings in eγe\gamma Collision With Initial Beams and Final State Polarizations

    Full text link
    The constraints on the anomalous quartic WWγγWW\gamma\gamma and ZZγγZZ\gamma\gamma gauge boson couplings are investigated through the processes eγ→W−γνee\gamma\to W^{-}\gamma\nu_{e} and eγ→Zγee\gamma\to Z\gamma e. Considering the longitudinal and transverse polarization states of the final W or Z boson and incoming beam polarizations we find 95% confidence level limits on the anomalous coupling parameters a0a_{0} and aca_{c} with an integrated luminosity of 500 fb−1fb^{-1} and s\sqrt{s}=0.5, 1 TeV energies. Assuming the W+W−γγW^{+}W^{-}\gamma\gamma couplings are independent of the ZZγγZZ\gamma\gamma couplings we show that the longitudinal polarization state of the final gauge boson improves the sensitivity to anomalous couplings by a factor of 2-3 depending on energy and coupling. An extra enhancement in sensitivity by a factor of 1.3 comes from a set of initial beam polarizations

    Enhancement of the transverse non-reciprocal magneto-optical effect

    Full text link
    The origin and properties of the transverse non-reciprocal magneto-optical (nMO) effect were studied. The transverse nMO effect occurs in the case when light propagates perpendicularly to the magnetic field. It was demonstrated that light can experience the transverse nMO effect only when it propagates in the vicinity of a boundary between two materials and the optical field at least in one material is evanescent. The transverse nMO effect is pronounced in the cases of surface plasmons and waveguiding modes. The magnitude of the transverse nMO effect is comparable to or greater than the magnitude of the longitudinal nMO effect. In the case of surface plasmons propagating at a boundary between the transition metal and the dielectric it is possible to magnify the transverse nMO effect and the magneto-optical figure-of-merit may increase from a few percents to above 100%. The scalar dispersion relation, which describes the transverse MO effect in cases of waveguide modes and surface plasmons propagating in a multilayer MO slab, was derived

    Lateral Effects in Fermion Antibunching

    Full text link
    Lateral effects are analyzed in the antibunching of a beam of free non-interacting fermions. The emission of particles from a source is dynamically described in a 3D full quantum field-theoretical framework. The size of the source and the detectors, as well as the temperature of the source are taken into account and the behavior of the visibility is scrutinized as a function of these parameters.Comment: 22 pages, 4 figure

    On demand entanglement in double quantum dots via coherent carrier scattering

    Get PDF
    We show how two qubits encoded in the orbital states of two quantum dots can be entangled or disentangled in a controlled way through their interaction with a weak electron current. The transmission/reflection spectrum of each scattered electron, acting as an entanglement mediator between the dots, shows a signature of the dot-dot entangled state. Strikingly, while few scattered carriers produce decoherence of the whole two-dots system, a larger number of electrons injected from one lead with proper energy is able to recover its quantum coherence. Our numerical simulations are based on a real-space solution of the three-particle Schroedinger equation with open boundaries. The computed transmission amplitudes are inserted in the analytical expression of the system density matrix in order to evaluate the entanglement.Comment: 20 pages, 5 figure

    Loop integration results using numerical extrapolation for a non-scalar integral

    Full text link
    Loop integration results have been obtained using numerical integration and extrapolation. An extrapolation to the limit is performed with respect to a parameter in the integrand which tends to zero. Results are given for a non-scalar four-point diagram. Extensions to accommodate loop integration by existing integration packages are also discussed. These include: using previously generated partitions of the domain and roundoff error guards.Comment: 4 pages, 3 figures, revised, contribution to ACAT03 (Dec. 2003

    LCG MCDB -- a Knowledgebase of Monte Carlo Simulated Events

    Get PDF
    In this paper we report on LCG Monte Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC collaborations by experts. In many cases, the modern Monte Carlo simulation of physical processes requires expert knowledge in Monte Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly dedicated to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project

    Purification through Zeno-like Measurements

    Full text link
    A series of frequent measurements on a quantum system (Zeno-like measurements) is shown to result in the ``purification'' of another quantum system in interaction with the former. Even though the measurements are performed on the former system, their effect drives the latter into a pure state, irrespectively of its initial (mixed) state, provided certain conditions are satisfied.Comment: REVTeX4, 4 pages, 1 figure; to be published in Phys. Rev. Lett. (2003

    Bifurcation Phenomenon in a Spin Relaxation

    Full text link
    Spin relaxation in a strong-coupling regime (with respect to the spin system) is investigated in detail based on the spin-boson model in a stochastic limit. We find a bifurcation phenomenon in temperature dependence of relaxation constants, which is never observed in the weak-coupling regime. We also discuss inequalities among the relaxation constants in our model and show the well-known relation 2\Gamma_T >= \Gamma_L, for example, for a wider parameter region than before.Comment: REVTeX4, 5 pages, 5 EPS figure

    Vertical current induced domain wall motion in MgO-based magnetic tunnel junction with low current densities

    Full text link
    Shifting electrically a magnetic domain wall (DW) by the spin transfer mechanism is one of the future ways foreseen for the switching of spintronic memories or registers. The classical geometries where the current is injected in the plane of the magnetic layers suffer from a poor efficiency of the intrinsic torques acting on the DWs. A way to circumvent this problem is to use vertical current injection. In that case, theoretical calculations attribute the microscopic origin of DW displacements to the out-of-plane (field-like) spin transfer torque. Here we report experiments in which we controllably displace a DW in the planar electrode of a magnetic tunnel junction by vertical current injection. Our measurements confirm the major role of the out-of-plane spin torque for DW motion, and allow to quantify this term precisely. The involved current densities are about 100 times smaller than the one commonly observed with in-plane currents. Step by step resistance switching of the magnetic tunnel junction opens a new way for the realization of spintronic memristive devices
    • …
    corecore