58,558 research outputs found
Low intensity X-ray and gamma-ray spectrometer
A low intensity X-ray and gamma ray spectrometer for imaging, counting, and energy resolving of single invisible radiation particles is described. The spectrometer includes a converting device for converting single invisible radiation particles to visible light photons. Another converting device converts the visible light photons to photoelectrons. A fiber optics coupling device couples together the two converting devices. An intensifying device intensifies the photoelectrons by an average gain factor of between 10 to the 4th power and 10 to the 7th power. The tensifying device is an anti-ion feedback microchannel plate amplifier which is operated substantially below saturation. A displaying device displays the intensified photoelectrons. The displaying device 32 indicates the spatial position, number, and energy of the incoming single invisible radiation particles
Real-time 3-D X-ray and gamma-ray viewer
A multi-pinhole aperture lead screen forms an equal plurality of invisible mini-images having dissimilar perspectives of an X-ray and gamma-ray emitting object (ABC) onto a near-earth phosphor layer. This layer provides visible light mini-images directly into a visible light image intensifier. A viewing screen having an equal number of dissimilar perspective apertures distributed across its face in a geometric pattern identical to the lead screen, provides a viewer with a real, pseudoscopic image (A'B'C') of the object with full horizontal and vertical parallax. Alternatively, a third screen identical to viewing screen and spaced apart from a second visible light image intensifier, may be positioned between the first image intensifier and the viewing screen, thereby providing the viewer with a virtual, orthoscopic image (A"B"C") of the object (ABC) with full horizontal and vertical parallax
Three-dimensional and tomographic imaging device for X-ray and gamma-ray emitting objects
An instrument for obtaining quantitative, three-dimensional and tomographic information relating to X-ray and gamma-ray emitting objects and for the orthoscopic viewing of such objects includes a multiple-pinhole aperture plate held spaced from an X-ray or gamma-ray to visible-light converter which is coupled to a visible-light image intensifier. The spacing between the aperture plate and the converter is chosen such that the mini-images of an emitting object formed by the pinholes do not substantially overlap as they impinge on the converter. The output of the image intensifier is digitized by a digitizing camera in terms of position and intensity and fed into a digital computer. The computer may output quantitative information relating to the emitting object directly, such as that relating to tomograms, or provide information in analogue form when coupled with a suitable viewing device to give an orthoscopic, three-dimensional image of the object
Spin-spin Correlation lengths of Bilayer Antiferromagnets
The spin-spin correlation length and the static structure factor for bilayer
antiferromagnets, such as YBaCuO, are calculated using field
theoretical and numerical methods. It is shown that these quantities can be
directly measured in neutron scattering experiments using energy integrated
two-axis scan despite the strong intensity modulation perpendicular to the
layers. Our calculations show that the correlation length of the bilayer
antiferromagnet diverges considerably more rapidly, as the temperature tends to
zero, than the correlation length of the corresponding single layer
antiferromagnet typified by LaCuO. This rapid divergence may have
important consequences with respect to magnetic fluctuations of the doped
superconductors.Comment: This paper supersedes cond-mat/9703138 and contains numerical
simulation results to compare against analytical results. 6 pages, 2
postscript figures (embedded), uses EuroPhys.sty and EuroMac
Spectral Anomaly and High Temperature Superconductors
Spectral anomaly for interacting Fermions is characterized by the spectral
function satisfying the scaling relation , where ,
, and are the exponents defining the universality class. For a Fermi
liquid , , ; all other values of the exponents are termed
anomalous. In this paper, an example for which , , but
is considered in detail. Attractive interaction added to such a
critical system leads to a novel superconducting state, which is explored and
its relevance to high temperature cuprate superconductors is discussed.Comment: RevTex, 53 pages (including figures
The Lixiscope concept
A portable X-ray imagery instrument which utilizes a converter phosphor or scintillator to convert the X-ray image into visible light image is described. The potential medical as well as industrial applications of the Lixiscope are presented
Calculating Biological Behaviors of Epigenetic States in Phage lambda Life Cycle
Gene regulatory network of lambda phage is one the best studied model systems
in molecular biology. More 50 years of experimental study has provided a
tremendous amount of data at all levels: physics, chemistry, DNA, protein, and
function. However, its stability and robustness for both wild type and mutants
has been a notorious theoretical/mathematical problem. In this paper we report
our successful calculation on the properties of this gene regulatory network.
We believe it is of its first kind. Our success is of course built upon
numerous previous theoretical attempts, but following 3 features make our
modeling uniqu:
1) A new modeling method particular suitable for stability and robustness
study;
2) Paying a close attention to the well-known difference of in vivo and in
vitro;
3) Allowing more important role for noise and stochastic effect to play.
The last two points have been discussed by two of us (Ao and Yin,
cond-mat/0307747), which we believe would be enough to make some of previous
theoretical attempts successful, too. We hope the present work would stimulate
a further interest in the emerging field of gene regulatory network.Comment: 16 pages, 3 figures, 1 tabl
- …