1,448 research outputs found
Bloch oscillations of Path-Entangled Photons
We show that when photons in N-particle path entangled |N,0> + |0,N> state
undergo Bloch oscillations, they exhibit a periodic transition between
spatially bunched and antibunched states. The transition occurs even when the
photons are well separated in space. We study the scaling of the
bunching-antibunching period, and show it is proportional to 1/N.Comment: An error in figure 1b of the original manuscript was corrected, and
the period was redefine
Spectral Polarization and Spectral Phase Control of Time and Energy Entangled Photons
We demonstrate a scheme to spectrally manipulate a collinear, continuous
stream of time and energy entangled photons to generate beamlike,
bandwidth-limited fuxes of polarization-entangled photons with
nearly-degenerate wavelengths. Utilizing an ultrashort-pulse shaper to control
the spectral phase and polarization of the photon pairs, we tailor the shape of
the Hong-Ou-Mandel interference pattern, demonstrating the rules that govern
the dependence of this interference pattern on the spectral phases of the
photons. We then use the pulse shaper to generate all four polarization Bell
states. The singlet state generated by this scheme forms a very robust
decoherence-free subspace, extremely suitable for long distance fiber-optics
based quantum communication.Comment: 5 pages, 3 figure
Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations
We consider the hydrodynamics of relativistic conformal field theories at
finite temperature. We show that the limit of slow motions of the ideal
hydrodynamics leads to the non-relativistic incompressible Euler equation. For
viscous hydrodynamics we show that the limit of slow motions leads to the
non-relativistic incompressible Navier-Stokes equation. We explain the physical
reasons for the reduction and discuss the implications. We propose that
conformal field theories provide a fundamental microscopic viewpoint of the
equations and the dynamics governed by them.Comment: 4 page
High-Resolution Measurements of Intersystem Bands of Carbon Monoxide toward X Persei
In an echelle spectrum of X Per acquired with the Space Telescope Imaging
Spectrograph we have identified individual rotational lines of 11
triplet-singlet (intersystem) absorption bands of ^12CO. Four bands provide
first detections for interstellar clouds. From a comparison with the zeta Oph
sight line we find that X Per is obscured by a higher 12CO column density of
1.4 x 10^16 cm-2. Together with the high spectral resolution of 1.3 km s-1,
this allows (i) an improved measurement of previously published f-values for
seven bands, and (ii) an extraction of the first astrophysical oscillator
strengths for d-X (8-0), (9-0), and (10-0), as well as for e-X (12-0). The
^13CO d-X (12-0) band, previously suspected to exist toward zeta Oph, is now
readily resolved and modeled. Our derived intersystem f-values for ^12CO
include a few mild (leq 34%) disagreements with recent predictions from a
perturbation analysis calculated for the interstellar excitation temperature.
Overall, the comparison confirms the superiority of employing multiple singlet
levels in the calculations of mixing coefficients over previous single-level
predictions.Comment: 11 pages (incl. 1 figure). Accepted by ApJ Letter
Performance issues with photonic beamformers
A photonic beamformer is presented, having smooth behavior. Third-order nonlinearities, resulting from its optoelectronic components, are investigated, with emphasis on their impact on the contrast of imaging radars. This contrast is shown to be severely limited by the induced RF nonlinearities. Limitations on the allowable modulation index are studied for linearly-chirped pulses returned from clutter
FUSE Measurements of Interstellar Fluorine
The source of fluorine is not well understood, although core-collapse
supernovae, Wolf-Rayet stars, and asymptotic giant branch stars have been
suggested. A search for evidence of the nu process during Type II supernovae is
presented. Absorption from interstellar F I is seen in spectra of HD 208440 and
HD 209339A acquired with the Far Ultraviolet Spectroscopic Explorer. In order
to extract the column density for F I from the line at 954 A, absorption from
H2 has to be modeled and then removed. Our analysis indicates that for H2
column densities less than about 3 x 10^20 cm^-2, the amount of F I can be
determined from lambda 954. For these two sight lines, there is no clear
indication for enhanced F abundances resulting from the nu process in a region
shaped by past supernovae.Comment: 17 pages, 4 figures, accepted for publication in Ap
Response of discrete nonlinear systems with many degrees of freedom
We study the response of a large array of coupled nonlinear oscillators to
parametric excitation, motivated by the growing interest in the nonlinear
dynamics of microelectromechanical and nanoelectromechanical systems (MEMS and
NEMS). Using a multiscale analysis, we derive an amplitude equation that
captures the slow dynamics of the coupled oscillators just above the onset of
parametric oscillations. The amplitude equation that we derive here from first
principles exhibits a wavenumber dependent bifurcation similar in character to
the behavior known to exist in fluids undergoing the Faraday wave instability.
We confirm this behavior numerically and make suggestions for testing it
experimentally with MEMS and NEMS resonators.Comment: Version 2 is an expanded version of the article, containing detailed
steps of the derivation that were left out in version 1, but no additional
result
Cleaning Corporate Governance
Although empirical scholarship dominates the field of law and finance, much of it shares a common vulnerability: an abiding faith in the accuracy and integrity of a small, specialized collection of corporate governance data. In this paper, we unveil a novel collection of three decades’ worth of corporate charters for thousands of public companies, which shows that this faith is misplaced.
We make three principal contributions to the literature. First, we label our corpus for a variety of firm- and state-level governance features. Doing so reveals significant infirmities within the most well-known corporate governance datasets, including an error rate exceeding eighty percent in the G-Index, the most widely used proxy for “good governance” in law and finance. Correcting these errors substantially weakens one of the most well-known results in law and finance, which associates good governance with higher investment returns. Second, we make our corpus freely available to others, in hope of providing a long-overdue resource for traditional scholars as well as those exploring new frontiers in corporate governance, ranging from machine learning to stakeholder governance to the effects of common ownership. Third, and more broadly, our analysis exposes twin cautionary tales about the critical role of lawyers in empirical research, and the dubious practice of throttling public access to public records
Reentrant vortex lattice transformation in four-fold symmetric superconductors
The physics behind the rhombicsquarerhombic flux line lattice
transformation in increasing fields is clarified on the basis of Eilenberger
theory. We demonstrate that this reentrance observed in LuNiBC is due
to intrinsic competition between superconducting gap and Fermi surface
anisotropies. The calculations reproduce not only it but also predict yet not
found lock-in transition to a square lattice with different orientation in
higher field. In view of physical origin given, this sequence of transitions is
rather generic to occur in four-fold symmetric superconductors.Comment: 5 pages, 4 figures,submitted to Phys. Rev. Let
- …