6,394 research outputs found
Bianchi Type III String Cosmological Models with Time Dependent Bulk Viscosity
Bianchi type III string cosmological models with bulk viscous fluid for
massive string are investigated. To get the determinate model of the universe,
we have assumed that the coefficient of bulk viscosity () is inversely
proportional to the expansion () in the model and expansion ()
in the model is proportional to the shear (). This leads to , and are constants. The behaviour of the model in presence
and absence of bulk viscosity, is discussed. The physical implications of the
models are also discussed in detail.Comment: 11 pages, no figur
Reconstruction of Cosmological Models From Equation of State of Dark Energy
We consider a class of five-dimensional cosmological solutions which contains
two arbitrary function and . We found that the arbitrary
function contained in the solutions can be rewritten in terms of the
redshift as a new arbitrary function . We further showed that this
new arbitrary function could be solved out for four known parameterized
equations of state of dark energy. Then the models can be reconstructed
and the evolution of the density and deceleration parameters of the universe
can be determined.Comment: 10 pages, 4 eps figures, ws-ijmpd.cls styl
Nonequilibrium 1/f Noise in Low-doped Manganite Single Crystals
1/f noise in current biased La0.82Ca0.18MnO3 crystals has been investigated.
The temperature dependence of the noise follows the resistivity changes with
temperature suggesting that resistivity fluctuations constitute a fixed
fraction of the total resistivity, independently of the dissipation mechanism
and magnetic state of the system. The noise scales as a square of the current
as expected for equilibrium resistivity fluctuations. However, at 77 K at bias
exceeding some threshold, the noise intensity starts to decrease with
increasing bias. The appearance of nonequilibrium noise is interpreted in terms
of bias dependent multi-step indirect tunneling.Comment: 4pages, 3figures,APL accepte
H-Dihyperon in Quark Cluster Model
The H dihyperon (DH) is studied in the framework of the SU(3) chiral quark
model. It is shown that except the chiral field, the overall effect of
the other SU(3) chiral fields is destructive in forming a stable DH. The
resultant mass of DH in a three coupled channel calculation is ranged from 2225
to 2234 .Comment: 9 pages, emte
Scaling near Quantum Chaos Border in Interacting Fermi Systems
The emergence of quantum chaos for interacting Fermi systems is investigated
by numerical calculation of the level spacing distribution as function
of interaction strength and the excitation energy above the
Fermi level. As increases, undergoes a transition from Poissonian
(nonchaotic) to Wigner-Dyson (chaotic) statistics and the transition is
described by a single scaling parameter given by , where is a constant. While the exponent ,
which determines the global change of the chaos border, is indecisive within a
broad range of , finite value of , which comes from the
increase of the Fock space size with , suggests that the transition
becomes sharp as increases.Comment: 4 pages, 4 figures, to appear in Phys. Rev. E (Rapid Communication
Phenomenological study of hadron interaction models
We present a phenomenological study of three models with different effective
degrees of freedom: a Goldstone Boson Exchange (GBE) model which is based on
quark-meson couplings, the quark delocalization, color screening model (QDCSM)
which is based on quark-gluon couplings with delocalized quark wavefunctions,
and the Fujiwara-Nijmegen (FN) mixed model which includes both quark-meson and
quark-gluon couplings. We find that for roughly two-thirds of 64 states
consisting of pairs of octet and decuplet baryons, the three models predict
similar effective baryon-baryon interactions. This suggests that the three very
different models, based on different effective degrees of freedom, are
nonetheless all compatible with respect to baryon spectra and baryon-baryon
interactions. We also discuss the differences between the three models and
their separate characteristics.Comment: 30 pages latex, 7 tables, 12 figs; submitted to Phys. Rev.
Microscopic theory of quantum dot interactions with quantum light: local field effect
A theory of both linear and nonlinear electromagnetic response of a single QD
exposed to quantum light, accounting the depolarization induced local--field
has been developed. Based on the microscopic Hamiltonian accounting for the
electron--hole exchange interaction, an effective two--body Hamiltonian has
been derived and expressed in terms of the incident electric field, with a
separate term describing the QD depolarization. The quantum equations of motion
have been formulated and solved with the Hamiltonian for various types of the
QD excitation, such as Fock qubit, coherent fields, vacuum state of
electromagnetic field and light with arbitrary photonic state distribution. For
a QD exposed to coherent light, we predict the appearance of two oscillatory
regimes in the Rabi effect separated by the bifurcation. In the first regime,
the standard collapse--revivals phenomenon do not reveal itself and the QD
population inversion is found to be negative, while in the second one, the
collapse--revivals picture is found to be strongly distorted as compared with
that predicted by the standard Jaynes-Cummings model. %The model developed can
easily be extended to %%electromagnetic excitation. For the case of QD
interaction with arbitrary quantum light state in the linear regime, it has
been shown that the local field induce a fine structure of the absorbtion
spectrum. Instead of a single line with frequency corresponding to which the
exciton transition frequency, a duplet is appeared with one component shifted
by the amount of the local field coupling parameter. It has been demonstrated
the strong light--mater coupling regime arises in the weak-field limit. A
physical interpretation of the predicted effects has been proposed.Comment: 14 pages, 7 figure
Analytic spectrum of relic gravitational waves modified by neutrino free streaming and dark energy
We include the effect of neutrino free streaming into the spectrum of relic
gravitational waves (RGWs) in the currently accelerating universe. For the
realistic case of a varying fractional neutrino energy density and a
non-vanishing derivative of mode function at the neutrino decoupling, the
integro-differential equation of RGWs is solved by a perturbation method for
the period from the neutrino decoupling to the matter-dominant stage.
Incorporating it to the analytic solution of the whole history of expansion of
the universe, the analytic solution of GRWs is obtained, evolving from the
inflation up to the current acceleration. The resulting spectrum of GRWs covers
the whole range of frequency Hz, and improves the
previous results. It is found that the neutrino free-streaming causes a
reduction of the spectral amplitude by in the range Hz, and leaves the other portion of the spectrum almost unchanged.
This agrees with the earlier numerical calculations. Examination is made on the
difference between the accelerating and non-accelerating models, and our
analysis shows that the ratio of the spectral amplitude in accelerating
CDM model over that in CDM model is , and within the various
accelerating models of the spectral amplitude is
proportional to for the whole range of frequency.
Comparison with LIGO S5 Runs Sensitivity shows that RGWs are not yet detectable
by the present LIGO, and in the future LISA may be able to detect RGWs in some
inflationary models.Comment: 22 pages,12 figures, accepeted by PR
Extended states in 1D lattices: application to quasiperiodic copper-mean chain
The question of the conditions under which 1D systems support extended
electronic eigenstates is addressed in a very general context. Using real space
renormalisation group arguments we discuss the precise criteria for determining
the entire spertrum of extended eigenstates and the corresponding
eigenfunctions in disordered as well as quasiperiodic systems. For purposes of
illustration we calculate a few selected eigenvalues and the corresponding
extended eigenfunctions for the quasiperiodic copper-mean chain. So far, for
the infinite copper-mean chain, only a single energy has been numerically shown
to support an extended eigenstate [ You et al. (1991)] : we show analytically
that there is in fact an infinite number of extended eigenstates in this
lattice which form fragmented minibands.Comment: 10 pages + 2 figures available on request; LaTeX version 2.0
Restoration of the third law in spin ice thin films.
A characteristic feature of spin ice is its apparent violation of the third law of thermodynamics. This leads to a number of interesting properties including the emergence of an effective vacuum for magnetic monopoles and their currents - magnetricity. Here we add a new dimension to the experimental study of spin ice by fabricating thin epitaxial films of Dy2Ti2O7, varying between 5 and 60 monolayers on an inert substrate. The films show the distinctive characteristics of spin ice at temperatures >2 K, but at lower temperature we find evidence of a zero entropy state. This restoration of the third law in spin ice thin films is consistent with a predicted strain-induced ordering of a very unusual type, previously discussed for analogous electrical systems. Our results show how the physics of frustrated pyrochlore magnets such as spin ice may be significantly modified in thin-film samples
- …