6,326 research outputs found

    Bianchi Type III String Cosmological Models with Time Dependent Bulk Viscosity

    Full text link
    Bianchi type III string cosmological models with bulk viscous fluid for massive string are investigated. To get the determinate model of the universe, we have assumed that the coefficient of bulk viscosity (ξ\xi) is inversely proportional to the expansion (θ\theta) in the model and expansion (θ\theta) in the model is proportional to the shear (σ\sigma). This leads to B=ℓCnB = \ell C^{n}, ℓ\ell and nn are constants. The behaviour of the model in presence and absence of bulk viscosity, is discussed. The physical implications of the models are also discussed in detail.Comment: 11 pages, no figur

    Reconstruction of 5D5D Cosmological Models From Equation of State of Dark Energy

    Full text link
    We consider a class of five-dimensional cosmological solutions which contains two arbitrary function μ(t)\mu(t) and ν(t)\nu(t). We found that the arbitrary function μ(t)\mu(t) contained in the solutions can be rewritten in terms of the redshift zz as a new arbitrary function f(z)f(z). We further showed that this new arbitrary function f(z)f(z) could be solved out for four known parameterized equations of state of dark energy. Then the 5D5D models can be reconstructed and the evolution of the density and deceleration parameters of the universe can be determined.Comment: 10 pages, 4 eps figures, ws-ijmpd.cls styl

    Nonequilibrium 1/f Noise in Low-doped Manganite Single Crystals

    Full text link
    1/f noise in current biased La0.82Ca0.18MnO3 crystals has been investigated. The temperature dependence of the noise follows the resistivity changes with temperature suggesting that resistivity fluctuations constitute a fixed fraction of the total resistivity, independently of the dissipation mechanism and magnetic state of the system. The noise scales as a square of the current as expected for equilibrium resistivity fluctuations. However, at 77 K at bias exceeding some threshold, the noise intensity starts to decrease with increasing bias. The appearance of nonequilibrium noise is interpreted in terms of bias dependent multi-step indirect tunneling.Comment: 4pages, 3figures,APL accepte

    H-Dihyperon in Quark Cluster Model

    Full text link
    The H dihyperon (DH) is studied in the framework of the SU(3) chiral quark model. It is shown that except the σ\sigma chiral field, the overall effect of the other SU(3) chiral fields is destructive in forming a stable DH. The resultant mass of DH in a three coupled channel calculation is ranged from 2225 MeVMeV to 2234 MeVMeV.Comment: 9 pages, emte

    Scaling near Quantum Chaos Border in Interacting Fermi Systems

    Full text link
    The emergence of quantum chaos for interacting Fermi systems is investigated by numerical calculation of the level spacing distribution P(s)P(s) as function of interaction strength UU and the excitation energy ϵ\epsilon above the Fermi level. As UU increases, P(s)P(s) undergoes a transition from Poissonian (nonchaotic) to Wigner-Dyson (chaotic) statistics and the transition is described by a single scaling parameter given by Z=(Uϵα−u0)ϵ1/2νZ = (U \epsilon^{\alpha}-u_0) \epsilon^{1/2\nu}, where u0u_0 is a constant. While the exponent α\alpha, which determines the global change of the chaos border, is indecisive within a broad range of 0.9∼2.00.9 \sim 2.0, finite value of ν\nu, which comes from the increase of the Fock space size with ϵ\epsilon, suggests that the transition becomes sharp as ϵ\epsilon increases.Comment: 4 pages, 4 figures, to appear in Phys. Rev. E (Rapid Communication

    Phenomenological study of hadron interaction models

    Get PDF
    We present a phenomenological study of three models with different effective degrees of freedom: a Goldstone Boson Exchange (GBE) model which is based on quark-meson couplings, the quark delocalization, color screening model (QDCSM) which is based on quark-gluon couplings with delocalized quark wavefunctions, and the Fujiwara-Nijmegen (FN) mixed model which includes both quark-meson and quark-gluon couplings. We find that for roughly two-thirds of 64 states consisting of pairs of octet and decuplet baryons, the three models predict similar effective baryon-baryon interactions. This suggests that the three very different models, based on different effective degrees of freedom, are nonetheless all compatible with respect to baryon spectra and baryon-baryon interactions. We also discuss the differences between the three models and their separate characteristics.Comment: 30 pages latex, 7 tables, 12 figs; submitted to Phys. Rev.

    Microscopic theory of quantum dot interactions with quantum light: local field effect

    Full text link
    A theory of both linear and nonlinear electromagnetic response of a single QD exposed to quantum light, accounting the depolarization induced local--field has been developed. Based on the microscopic Hamiltonian accounting for the electron--hole exchange interaction, an effective two--body Hamiltonian has been derived and expressed in terms of the incident electric field, with a separate term describing the QD depolarization. The quantum equations of motion have been formulated and solved with the Hamiltonian for various types of the QD excitation, such as Fock qubit, coherent fields, vacuum state of electromagnetic field and light with arbitrary photonic state distribution. For a QD exposed to coherent light, we predict the appearance of two oscillatory regimes in the Rabi effect separated by the bifurcation. In the first regime, the standard collapse--revivals phenomenon do not reveal itself and the QD population inversion is found to be negative, while in the second one, the collapse--revivals picture is found to be strongly distorted as compared with that predicted by the standard Jaynes-Cummings model. %The model developed can easily be extended to %%electromagnetic excitation. For the case of QD interaction with arbitrary quantum light state in the linear regime, it has been shown that the local field induce a fine structure of the absorbtion spectrum. Instead of a single line with frequency corresponding to which the exciton transition frequency, a duplet is appeared with one component shifted by the amount of the local field coupling parameter. It has been demonstrated the strong light--mater coupling regime arises in the weak-field limit. A physical interpretation of the predicted effects has been proposed.Comment: 14 pages, 7 figure

    Analytic spectrum of relic gravitational waves modified by neutrino free streaming and dark energy

    Get PDF
    We include the effect of neutrino free streaming into the spectrum of relic gravitational waves (RGWs) in the currently accelerating universe. For the realistic case of a varying fractional neutrino energy density and a non-vanishing derivative of mode function at the neutrino decoupling, the integro-differential equation of RGWs is solved by a perturbation method for the period from the neutrino decoupling to the matter-dominant stage. Incorporating it to the analytic solution of the whole history of expansion of the universe, the analytic solution of GRWs is obtained, evolving from the inflation up to the current acceleration. The resulting spectrum of GRWs covers the whole range of frequency (10−19∼1010)(10^{-19}\sim 10^{10})Hz, and improves the previous results. It is found that the neutrino free-streaming causes a reduction of the spectral amplitude by ∼20\sim 20% in the range (10−16∼10−10)(10^{-16}\sim 10^{-10}) Hz, and leaves the other portion of the spectrum almost unchanged. This agrees with the earlier numerical calculations. Examination is made on the difference between the accelerating and non-accelerating models, and our analysis shows that the ratio of the spectral amplitude in accelerating Λ\LambdaCDM model over that in CDM model is ∼0.7\sim 0.7, and within the various accelerating models of ΩΛ>Ωm\Omega_{\Lambda}> \Omega_m the spectral amplitude is proportional to Ωm/ΩΛ \Omega_m/\Omega_{\Lambda} for the whole range of frequency. Comparison with LIGO S5 Runs Sensitivity shows that RGWs are not yet detectable by the present LIGO, and in the future LISA may be able to detect RGWs in some inflationary models.Comment: 22 pages,12 figures, accepeted by PR

    Extended states in 1D lattices: application to quasiperiodic copper-mean chain

    Full text link
    The question of the conditions under which 1D systems support extended electronic eigenstates is addressed in a very general context. Using real space renormalisation group arguments we discuss the precise criteria for determining the entire spertrum of extended eigenstates and the corresponding eigenfunctions in disordered as well as quasiperiodic systems. For purposes of illustration we calculate a few selected eigenvalues and the corresponding extended eigenfunctions for the quasiperiodic copper-mean chain. So far, for the infinite copper-mean chain, only a single energy has been numerically shown to support an extended eigenstate [ You et al. (1991)] : we show analytically that there is in fact an infinite number of extended eigenstates in this lattice which form fragmented minibands.Comment: 10 pages + 2 figures available on request; LaTeX version 2.0

    Restoration of the third law in spin ice thin films.

    Get PDF
    A characteristic feature of spin ice is its apparent violation of the third law of thermodynamics. This leads to a number of interesting properties including the emergence of an effective vacuum for magnetic monopoles and their currents - magnetricity. Here we add a new dimension to the experimental study of spin ice by fabricating thin epitaxial films of Dy2Ti2O7, varying between 5 and 60 monolayers on an inert substrate. The films show the distinctive characteristics of spin ice at temperatures >2 K, but at lower temperature we find evidence of a zero entropy state. This restoration of the third law in spin ice thin films is consistent with a predicted strain-induced ordering of a very unusual type, previously discussed for analogous electrical systems. Our results show how the physics of frustrated pyrochlore magnets such as spin ice may be significantly modified in thin-film samples
    • …
    corecore