218 research outputs found

    Do Daphnia use metalimnetic organic matter in a north temperate lake? An analysis of vertical migration

    Get PDF
    Diel vertical migration of zooplankton is influenced by a variety of factors including predation, food, and temperature. Research has recently shifted from a focus on factors influencing migration to how migration affects nutrient cycling and habitat coupling. Here we evaluate the potential for Daphnia migrations to incorporate metalimnetic productivity in a well-studied northern Wisconsin lake. We use prior studies conducted between 1985 and 1990 and current diel migration data (2008) to compare day and night Daphnia vertical distributions with the depth of the metalimnion (between the thermocline and 1% light depth). Daphnia migrate from a daytime mean residence depth of between about 1.7 and 2.5 m to a nighttime mean residence depth of between 0 and 2.0 m. These migrations are consistent between the prior period and current measurements. Daytime residence depths of Daphnia are rarely deep enough to reach the metalimnion; hence, metalimnetic primary production is unlikely to be an important resource for Daphnia in this system

    Estimating stable isotope turnover rates of epidermal mucus and dorsal muscle for an omnivorous fish using a diet-switch experiment

    Get PDF
    © 2018, The Author(s). Stable isotope (SI) analysis studies rely on knowledge of isotopic turnover rates and trophic-step discrimination factors. Epidermal mucus (‘mucus’) potentially provides an alternative SI ‘tissue’ to dorsal muscle that can be collected non-invasively and non-destructively. Here, a diet-switch experiment using the omnivorous fish Cyprinus carpio and plant- and fish-based formulated feeds compared SI data between mucus and muscle, including their isotopic discrimination factors and turnover rates (as functions of time T and mass G, at isotopic half-life (50) and equilibrium (95)). Mucus isotope data differed significantly and predictively from muscle data. The fastest δ13C turnover rate was for mucus in fish on the plant-based diet (T50: 17 days, T95: 74 days; G50: 1.08(BM), G95: 1.40(BM)). Muscle turnover rates were longer for the same fish (T50: 44 days, T95: 190 days; G50: 1.13(BM), G95: 1.68(BM)). Longer half-lives resulted in both tissues from the fish-based diet. δ13C discrimination factors varied by diet and tissue (plant-based: 3.11–3.28‰; fishmeal: 1.28–2.13‰). Mucus SI data did not differ between live and frozen fish. These results suggest that mucus SI half-lives provide comparable data to muscle, and can be used as a non-destructive alternative tissue in fish-based SI studies

    A T3 and T7 Recombinant Phage Acquires Efficient Adsorption and a Broader Host Range

    Get PDF
    It is usually thought that bacteriophage T7 is female specific, while phage T3 can propagate on male and female Escherichia coli. We found that the growth patterns of phages T7M and T3 do not match the above characteristics, instead showing strain dependent male exclusion. Furthermore, a T3/7 hybrid phage exhibits a broader host range relative to that of T3, T7, as well as T7M, and is able to overcome the male exclusion. The T7M sequence closely resembles that of T3. T3/7 is essentially T3 based, but a DNA fragment containing part of the tail fiber gene 17 is replaced by the T7 sequence. T3 displays inferior adsorption to strains tested herein compared to T7. The T3 and T7 recombinant phage carries altered tail fibers and acquires better adsorption efficiency than T3. How phages T3 and T7 recombine was previously unclear. This study is the first to show that recombination can occur accurately within only 8 base-pair homology, where four-way junction structures are identified. Genomic recombination models based on endonuclease I cleavages at equivalent and nonequivalent sites followed by strand annealing are proposed. Retention of pseudo-palindromes can increase recombination frequency for reviving under stress

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Über die Bildung von Thiazolderivaten aus Harnsäure

    No full text

    �ber die Oxydation des Morphins

    No full text

    Studien �ber Verbindungen aus dem animalischen Theer

    No full text
    corecore