1,048 research outputs found
Vortex-glass transition in superconducting Nb/Cu superlattices
Nb/Cu superconducting superlattices have been fabricated by dc magnetron
sputtering. This system shows a vortex glass transition with critical exponents
similar to high temperatures superconductors exponents. The transition
dymensionality is governed by the superconducting coupling regime. The vortex
glass transition shows a pure two dimensional behavior in decoupled
superlattices and a quasi-two dimensional behavior in the superlattice coupling
regime.Comment: 9 pages, 3 figure
Multi-scale morphology of the galaxy distribution
Many statistical methods have been proposed in the last years for analyzing
the spatial distribution of galaxies. Very few of them, however, can handle
properly the border effects of complex observational sample volumes. In this
paper, we first show how to calculate the Minkowski Functionals (MF) taking
into account these border effects. Then we present a multiscale extension of
the MF which gives us more information about how the galaxies are spatially
distributed. A range of examples using Gaussian random fields illustrate the
results. Finally we have applied the Multiscale Minkowski Functionals (MMF) to
the 2dF Galaxy Redshift Survey data. The MMF clearly indicates an evolution of
morphology with scale. We also compare the 2dF real catalog with mock catalogs
and found that Lambda-CDM simulations roughly fit the data, except at the
finest scale.Comment: 17 pages, 19 figures, accepted for publication in MNRA
Control of dissipation in superconducting films by magnetic stray fields
Hybrid superconducting/magnetic nanostructures on Si substrates have been
built with identical physical dimensions but different magnetic configurations.
By constructing arrays based on Co-dots with in-plane, out-of-plane, and vortex
state magnetic configurations, the stray fields are systematically tuned.
Dissipation in the mixed state of superconductors can be decreased (increased)
by several orders of magnitude by decreasing (increasing) the stray magnetic
fields. Furthermore, ordering of the stray fields over the entire array helps
to suppress dissipation and enhance commensurability effects increasing the
number of dissipation minima.Comment: 16 pages including 4 figures; accepted in Applied Physics Letter
Effective penetration length and interstitial vortex pinning in superconducting films with regular arrays of defects
In order to compare magnetic and non-magnetic pinning we have nanostructured
two superconducting films with regular arrays of pinning centers: Cu
(non-magnetic) dots in one case, and Py (magnetic) dots in the other. For low
applied magnetic fields, when all the vortices are pinned in the artificial
inclusions, magnetic dots prove to be better pinning centers, as has been
generally accepted. Unexpectedly, when the magnetic field is increased and
interstitial vortices appear, the results are very different: we show how the
stray field generated by the magnetic dots can produce an effective reduction
of the penetration length. This results in strong consequences in the transport
properties, which, depending on the dot separation, can lead to an enhancement
or worsening of the transport characteristics. Therefore, the election of the
magnetic or non-magnetic character of the pinning sites for an effective
reduction of dissipation will depend on the range of the applied magnetic
field.Comment: 10 pages, 3 figure
Superconducting/magnetic three state nanodevice for memory and reading applications
We present a simple nanodevice that can operate in two modes: i) three-state
memory and ii) reading device. The nanodevice is fabricated with an array of
ordered triangular-shaped nanomagnets embedded in a superconducting thin film.
The input signal is ac current and the output signal is dc voltage. Vortex
ratchet effect in combination with out of plane magnetic anisotropy of the
nanomagnets is the background physics which governs the nanodevice performance.Comment: 10 pages, 4 figure
- …