1,048 research outputs found

    Vortex-glass transition in superconducting Nb/Cu superlattices

    Full text link
    Nb/Cu superconducting superlattices have been fabricated by dc magnetron sputtering. This system shows a vortex glass transition with critical exponents similar to high temperatures superconductors exponents. The transition dymensionality is governed by the superconducting coupling regime. The vortex glass transition shows a pure two dimensional behavior in decoupled superlattices and a quasi-two dimensional behavior in the superlattice coupling regime.Comment: 9 pages, 3 figure

    Multi-scale morphology of the galaxy distribution

    Get PDF
    Many statistical methods have been proposed in the last years for analyzing the spatial distribution of galaxies. Very few of them, however, can handle properly the border effects of complex observational sample volumes. In this paper, we first show how to calculate the Minkowski Functionals (MF) taking into account these border effects. Then we present a multiscale extension of the MF which gives us more information about how the galaxies are spatially distributed. A range of examples using Gaussian random fields illustrate the results. Finally we have applied the Multiscale Minkowski Functionals (MMF) to the 2dF Galaxy Redshift Survey data. The MMF clearly indicates an evolution of morphology with scale. We also compare the 2dF real catalog with mock catalogs and found that Lambda-CDM simulations roughly fit the data, except at the finest scale.Comment: 17 pages, 19 figures, accepted for publication in MNRA

    Constructivisme i controvèrsia

    Get PDF

    Salus populi, suprema lex. Higiene i urbanisme en la ciutat burgesa

    Get PDF

    Control of dissipation in superconducting films by magnetic stray fields

    Full text link
    Hybrid superconducting/magnetic nanostructures on Si substrates have been built with identical physical dimensions but different magnetic configurations. By constructing arrays based on Co-dots with in-plane, out-of-plane, and vortex state magnetic configurations, the stray fields are systematically tuned. Dissipation in the mixed state of superconductors can be decreased (increased) by several orders of magnitude by decreasing (increasing) the stray magnetic fields. Furthermore, ordering of the stray fields over the entire array helps to suppress dissipation and enhance commensurability effects increasing the number of dissipation minima.Comment: 16 pages including 4 figures; accepted in Applied Physics Letter

    Effective penetration length and interstitial vortex pinning in superconducting films with regular arrays of defects

    Get PDF
    In order to compare magnetic and non-magnetic pinning we have nanostructured two superconducting films with regular arrays of pinning centers: Cu (non-magnetic) dots in one case, and Py (magnetic) dots in the other. For low applied magnetic fields, when all the vortices are pinned in the artificial inclusions, magnetic dots prove to be better pinning centers, as has been generally accepted. Unexpectedly, when the magnetic field is increased and interstitial vortices appear, the results are very different: we show how the stray field generated by the magnetic dots can produce an effective reduction of the penetration length. This results in strong consequences in the transport properties, which, depending on the dot separation, can lead to an enhancement or worsening of the transport characteristics. Therefore, the election of the magnetic or non-magnetic character of the pinning sites for an effective reduction of dissipation will depend on the range of the applied magnetic field.Comment: 10 pages, 3 figure

    Superconducting/magnetic three state nanodevice for memory and reading applications

    Get PDF
    We present a simple nanodevice that can operate in two modes: i) three-state memory and ii) reading device. The nanodevice is fabricated with an array of ordered triangular-shaped nanomagnets embedded in a superconducting thin film. The input signal is ac current and the output signal is dc voltage. Vortex ratchet effect in combination with out of plane magnetic anisotropy of the nanomagnets is the background physics which governs the nanodevice performance.Comment: 10 pages, 4 figure
    corecore