51 research outputs found

    Fronts and interfaces in bistable extended mappings

    Full text link
    We study the interfaces' time evolution in one-dimensional bistable extended dynamical systems with discrete time. The dynamics is governed by the competition between a local piece-wise affine bistable mapping and any couplings given by the convolution with a function of bounded variation. We prove the existence of travelling wave interfaces, namely fronts, and the uniqueness of the corresponding selected velocity and shape. This selected velocity is shown to be the propagating velocity for any interface, to depend continuously on the couplings and to increase with the symmetry parameter of the local nonlinearity. We apply the results to several examples including discrete and continuous couplings, and the planar fronts' dynamics in multi-dimensional Coupled Map Lattices. We eventually emphasize on the extension to other kinds of fronts and to a more general class of bistable extended mappings for which the couplings are allowed to be nonlinear and the local map to be smooth.Comment: 27 pages, 3 figures, submitted to Nonlinearit

    Weak limits of zeros of orthogonal polynomials

    Full text link
    Let ÎŒ be a positive unit Borel measure with infinite support on the interval [−1, 1]. Let P n ( x, ÎŒ ) denote the monic orthogonal polynomial of degree n associated with ÎŒ , and let v n ( ÎŒ ) denote the unit measure with mass 1/ n at each zero of P n ( x, ÎŒ ). A carrier is a Borel subset of the support of ÎŒ having unit ÎŒ -measure, and a measure v is carrier related to ÎŒ when it has the same carriers as ÎŒ . We demonstrate that for each carrier B of positive capacity there is a measure v , which is carrier related to ÎŒ , such that the equilibrium measure of the carrier B is the weak limit of the sequence { v n ( v )} n =1/∞ .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41341/1/365_2005_Article_BF01893436.pd

    Quantum mechanical potentials related to the prime numbers and Riemann zeros

    Full text link
    Prime numbers are the building blocks of our arithmetic, however, their distribution still poses fundamental questions. Bernhard Riemann showed that the distribution of primes could be given explicitly if one knew the distribution of the non-trivial zeros of the Riemann ζ(s)\zeta(s) function. According to the Hilbert-P{\'o}lya conjecture there exists a Hermitean operator of which the eigenvalues coincide with the real part of the non-trivial zeros of ζ(s)\zeta(s). This idea encourages physicists to examine the properties of such possible operators, and they have found interesting connections between the distribution of zeros and the distribution of energy eigenvalues of quantum systems. We apply the Mar{\v{c}}henko approach to construct potentials with energy eigenvalues equal to the prime numbers and to the zeros of the ζ(s)\zeta(s) function. We demonstrate the multifractal nature of these potentials by measuring the R{\'e}nyi dimension of their graphs. Our results offer hope for further analytical progress.Comment: 7 pages, 5 figures, 2 table

    Physics of the Riemann Hypothesis

    Full text link
    Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here we choose a particular number theoretical function, the Riemann zeta function and examine its influence in the realm of physics and also how physics may be suggestive for the resolution of one of mathematics' most famous unconfirmed conjectures, the Riemann Hypothesis. Does physics hold an essential key to the solution for this more than hundred-year-old problem? In this work we examine numerous models from different branches of physics, from classical mechanics to statistical physics, where this function plays an integral role. We also see how this function is related to quantum chaos and how its pole-structure encodes when particles can undergo Bose-Einstein condensation at low temperature. Throughout these examinations we highlight how physics can perhaps shed light on the Riemann Hypothesis. Naturally, our aim could not be to be comprehensive, rather we focus on the major models and aim to give an informed starting point for the interested Reader.Comment: 27 pages, 9 figure

    Note

    No full text
    • 

    corecore