5 research outputs found

    Hepatic wound repair

    Get PDF
    BACKGROUND: Human chronic liver diseases (CLDs) with different aetiologies rely on chronic activation of wound healing that represents the driving force for fibrogenesis progression (throughout defined patterns of fibrosis) to the end stage of cirrhosis and liver failure. ISSUES: Fibrogenesis progression has a major worldwide clinical impact due to the high number of patients affected by CLDs, increasing mortality rate, incidence of hepatocellular carcinoma and shortage of organ donors for liver transplantation. BASIC SCIENCE ADVANCES: Liver fibrogenesis is sustained by a heterogeneous population of profibrogenic hepatic myofibroblasts (MFs), the majority being positive for alpha smooth muscle actin (alphaSMA), that may originate from hepatic stellate cells and portal fibroblasts following a process of activation or from bone marrow-derived cells recruited to damaged liver and, in a method still disputed, by a process of epithelial to mesenchymal transition (EMT) involving cholangiocytes and hepatocytes. Recent experimental and clinical data have identified, at tissue, cellular and molecular level major profibrogenic mechanisms: (a) chronic activation of the wound-healing reaction, (b) oxidative stress and related reactive intermediates, and (c) derangement of epithelial-mesenchymal interactions. CLINICAL CARE RELEVANCE: Liver fibrosis may regress following specific therapeutic interventions able to downstage or, at least, stabilise fibrosis. In cirrhotic patients, this would lead to a reduction of portal hypertension and of the consequent clinical complications and to an overall improvement of liver function, thus extending the complication-free patient survival time and reducing the need for liver transplantation. CONCLUSION: Emerging mechanisms and concepts related to liver fibrogenesis may significantly contribute to clinical management of patients affected by CLDs

    Dose dependent and divergent effects of superoxide anion on cell death, proliferation, and migration of activated human hepatic stellate cells

    No full text
    BACKGROUND AND AIM: Activated myofibroblast‐like cells, originating from hepatic stellate cells (HSC/MFs) or other cellular sources, play a key profibrogenic role in chronic liver diseases (CLDs) that, as suggested by studies in animal models or rat HSC/MFs, may be modulated by reactive oxygen intermediates (ROI). In this study, human HSC/MFs, exposed to different levels of superoxide anion (O(2)(•−)) and, for comparison, hydrogen peroxide (H(2)O(2)), were analysed in terms of cytotoxicity, proliferative response, and migration. METHODS: Cultured human HSC/MFs were exposed to controlled O(2)(•−) generation by hypoxanthine/xanthine oxidase systems or to a range of H(2)O(2) concentrations. Induction of cell death, proliferation, and migration were investigated using morphology, molecular biology, and biochemical techniques. RESULTS: Human HSC/MFs were shown to be extremely resistant to induction of cell death by O(2)(•−) and only high rates of O(2)(•−) generation induced either necrotic or apoptotic cell death. Non‐cytotoxic low levels of O(2)(•−), able to upregulate procollagen type I expression (but not tissue inhibitor of metalloproteinase 1 and 2), stimulated migration of human HSC/MFs in a Ras/extracellular regulated kinase (ERK) dependent, antioxidant sensitive way, without affecting basal or platelet derived growth factor (PDGF) stimulated cell proliferation. Non‐cytotoxic levels of H(2)O(2) did not affect Ras/ERK or proliferative response. A high rate of O(2)(•−) generation or elevated levels of H(2)O(2 )induced cytoskeletal alterations, block in motility, and inhibition of PDGF dependent DNA synthesis. CONCLUSIONS: Low non‐cytotoxic levels of extracellularly generated O(2)(•−) may stimulate selected profibrogenic responses in human HSC/MFs without affecting proliferation

    Overexpression of Bcl‐2 by activated human hepatic stellate cells: resistance to apoptosis as a mechanism of progressive hepatic fibrogenesis in humans

    No full text
    BACKGROUND AND AIMS: Myofibroblast‐like cells, originating from activation of hepatic stellate cells (HSC/MFs), play a key role in liver fibrosis, a potentially reversible process that may rely on induction of HSC/MFs apoptosis. While this possibility has been shown in cultured rat HSC, very limited data are currently available for human HSC/MFs. METHODS: Cultured human HSC/MFs were exposed to several proapoptotic stimuli, including those known to induce apoptosis in rat HSC/MFs, and induction of cell death and related mechanisms were investigated using morphology, molecular biology, and biochemical techniques. RESULTS: In this study we report that fully activated human HSC/MFs did not undergo spontaneous apoptosis and survived to prolonged serum deprivation, Fas activation, or exposure to nerve growth factor, tumour necrosis factor α (TNF‐α), oxidative stress mediators, doxorubicin, and etoposide. Induction of caspase dependent, mitochondria driven apoptosis in HSC/MFs was observed only when protein synthesis or transcription were inhibited. Importantly, the process of HSC activation was accompanied by changes in expression of a set of genes involved in apoptosis control. In particular, activated human HSC/MFs in culture overexpressed Bcl‐2. The role of Bcl‐2 was crucial as Bcl‐2 silenced cells became susceptible to TNF‐α induced apoptosis. Finally, Bcl‐2 was markedly expressed in HSC/MFs present in liver tissue obtained from patients with hepatitis C virus related cirrhosis. CONCLUSIONS: Human activated HSC/MFs are resistant to most proapoptotic stimuli due to Bcl‐2 overexpression and this feature may play a key role in the progression of fibrosis in chronic liver diseases
    corecore