8 research outputs found
Axial Concentration Profiles and NO Flue Gas in a Pilot-Scale Bubbling Fluidized Bed Coal Combustor
Atmospheric bubbling fluidized bed coal combustion of a bituminous coal and anthracite with
particle diameters in the range 500-4000 Ãm was investigated in a pilot-plant facility. The
experiments were conducted at steady-state conditions using three excess air levels (10, 25, and
50%) and bed temperatures in the 750-900 °C range. Combustion air was staged, with primary
air accounting for 100, 80, and 60% of total combustion air. For both types of coal, high NO
concentrations were found inside the bed. In general, the NO concentration decreased monotonically
along the freeboard and toward the exit flue; however, during combustion with high air
staging and low to moderate excess air, a significant additional NO formation occurred near the
secondary air injection point. The results show that the bed temperature increase does not affect
the NO flue gas concentration significantly. There is a positive correlation between excess air
and the NO flue gas concentration. The air staging operation is very effective in lowering the
NO flue gas, but there is a limit for the first stage stoichiometry below which the NO flue gas
starts rising again. This effect could be related with the coal rank