63 research outputs found

    Localization of unresolved regions in the selective large-eddy simulation of hypersonic jets

    Get PDF
    A method for the localization of the regions where the turbulent fluctuations are unresolved is applied to the selective large-eddy simulation (LES) of a compressible turbulent jet of Mach number equal to 5. This method is based on the introduction of a scalar probe function f which represents the magnitude of the twisting-stretching term normalized with the enstrophy [1]. The statistical analysis shows that, for a fully developed turbulent field of fluctuations, the probability that f is larger than 2 is zero, while, for an unresolved field, is finite. By computing f in each instantaneous realization of the simulation it is possible to locate the regions where the magnitude of the normalized stretching-twisting is anomalously high. This allows the identification of the regions where the subgrid model should be introduced into the governing equations (selective filtering). The results of the selective LES are compared with those of a standard LES, where the subgrid terms are used in the whole domain. The comparison is carried out by assuming as high order reference field a higher resolution Euler simulation of the compressible jet. It is shown that the selective LES modifies the dynamic properties of the flow to a lesser extent with respect to the classical LE

    Philofluid turbulent flow database

    Get PDF
    A set of velocity and passive scalar fields and their statistics coming from direct numerical simulations and large-eddy simulations. The database includes: shearless mixings in two a three dimensions, turbulent channel flow, cavity flow. Username and password to access the netdisks is provided upon request

    Cross and magnetic helicity in the outer heliosphere from Voyager 2 observations

    Get PDF
    Plasma velocity and magnetic field measurements from the Voyager 2 mission are used to study solar wind turbulence in the slow solar wind at two different heliocentric distances, 5 and 29 astronomical units, sufficiently far apart to provide information on the radial evolution of this turbulence. The magnetic helicity and the cross-helicity, which express the correlation between the plasma velocity and the magnetic field, are used to characterize the turbulence. Wave number spectra are computed by means of the Taylor hypothesis applied to time resolved single point Voyager 2 measurements. The overall picture we get is complex and difficult to interpret. A substantial decrease of the cross-helicity at smaller scales (over 1-3 hours of observation) with increasing heliocentric distance is observed. At 5 AU the only peak in the probability density of the normalized residual energy is negative, near -0.5. At 29 AU the probability density becomes doubly peaked, with a negative peak at -0.5 and a smaller peak at a positive values of about 0.7. A decrease of the cross-helicity for increasing heliocentric distance is observed, together with a reduction of the unbalance toward the magnetic energy of the energy of the fluctuations. For the smaller scales, we found that at 29 AU the normalized polarization is small and positive on average (about 0.1), it is instead zero at 5 AU. For the larger scales, the polarization is low and positive at 5 AU (average around 0.1) while it is negative (around - 0.15) at 29 AU.Comment: 14 pages 5 figures. Accepted for publication on European Journal of Mechanics B/Fluids (5/8/2015

    Turbulence in the solar wind: spectra from Voyager 2 data at 5 AU

    Get PDF
    Fluctuations in the flow velocity and magnetic fields are ubiquitous in the Solar System. These fluctuations are turbulent, in the sense that they are disordered and span a broad range of scales in both space and time. The study of solar wind turbulence is motivated by a number of factors all keys to the understanding of the Solar Wind origin and thermodynamics. The solar wind spectral properties are far from uniformity and evolve with the increasing distance from the sun. Most of the available spectra of solar wind turbulence were computed at 1 astronomical unit, while accurate spectra on wide frequency ranges at larger distances are still few. In this paper we consider solar wind spectra derived from the data recorded by the Voyager 2 mission during 1979 at about 5 AU from the sun. Voyager 2 data are an incomplete time series with a voids/signal ratio that typically increases as the spacecraft moves away from the sun (45% missing data in 1979), making the analysis challenging. In order to estimate the uncertainty of the spectral slopes, different methods are tested on synthetic turbulence signals with the same gap distribution as V2 data. Spectra of all variables show a power law scaling with exponents between -2.1 and -1.1, depending on frequency subranges. Probability density functions (PDFs) and correlations indicate that the flow has a significant intermittency.Comment: 14 pages, 7 figures. Discussion improved since the previous versio

    Large fluctuations of the nonlinearities in isotropic turbulence. Anisotropic filtering analysis

    Get PDF
    Using a Navier–Stokes isotropic turbulent field numerically simulated in a box with a discretization of 10243 (Biferale et al., 2005), we show that the probability of having a stretching–tilting larger than a few times the local enstrophy is low. By using an anisotropic kind of filter in the Fourier space, where wavenumbers that have at least one component below a threshold or inside a range are removed, we analyze these survival statistics when the large, the small inertial or the small inertial and dissipation scales are filtered out. By considering a flow obtained by randomizing the phases of the Fourier modes, and applying our filtering techniques, we identified clearly the properties attributable to turbulence. It can be observed that, in the unfiltered isotropic Navier–Stokes field, the probability of the ratio (|ω·∇U|/|ω|2) being higher than a given threshold is higher than in the fields where the large scales were filtered out. At the same time, it is lower than in the fields where the small inertial and dissipation range of scales is filtered out. This is basically due to the suppression of compact structures in the ranges that have been filtered in different ways. The partial removal of the background of filaments and sheets does not have a first order effect on these statistics. These results are discussed in the light of a hypothesized relation between vortical filaments, sheets and blobs in physical space and in Fourier space. The study in fact can be viewed as a kind of test for this idea and tries to highlight its limits. We conclude that a qualitative relation in physical space and in Fourier space can be supposed to exist for blobs only. That is for the near isotropic structures which are sufficiently described by a single spatial scale and do not suffer from the disambiguation problem as filaments and sheets do. Information is also given on the filtering effect on statistics concerning the inclination of the strain rate tensor eigenvectors with respect to vorticity. In all filtered ranges, eigenvector 2 reduces its alignment, while eigenvector 3 reduces its misalignment. All filters increase the gap between the most extensional eigenvalue ⟚λ1⟩ and the intermediate one ⟚λ2⟩ and the gap between this last ⟚λ2⟩ and the contractile eigenvalue ⟚λ3⟩. When the large scales are missing, the modulus of the eigenvalue 1 becomes nearly equal to that of the eigenvalue 3, similarly to the modulus of the associated components of the enstrophy production

    Dimensionality influence on passive scalar transport

    Get PDF
    We numerically investigate the advection of a passive scalar through an interface placed inside a decaying shearless turbulent mixing layer. We consider the system in both two and three dimensions. The dimensionality produces a different time scaling of the diffusion, which is faster in the two-dimensional case. Two intermittent fronts are generated at the margins of the mixing layer. During the decay these fronts present a sort of propagation in both the direction of the scalar flow and the opposite direction. In two dimensions, the propagation of the fronts exhibits a significant asymmetry with respect to the initial position of the interface and is deeper for the front merged in the high energy side of the mixing. In three dimensions, the two fronts remain nearly symmetrically placed. Results concerning the scalar spectra exponents are also presented

    "Philofluid" turbulent flow database

    Get PDF
    A set of velocity and passive scalar fields and their statistics coming from direct numerical simulations and large-eddy simulations. The database includes: shearless mixings in two a three dimensions, turbulent channel flow, cavity flow. Username and password to access the netdisks is provided upon request

    IMPACT OF TURBULENCE MODELING ON FLUID/SOLID HEAT TRANSFER INSIDE INDUSTRIAL AUTOCLAVES

    Get PDF
    This work is centred on the analysis of the impact of different turbulence modeling approaches on the fluid/solid heat exchange inside a commercial size autoclave. This project proposes itself to be a first step towards the optimization of the turbulent flow inside this kind of machinery to improve the curing treatment of Carbon-Fiber Reinforced Plastics (CFRP). The setup of the CFD simulations includes the presence of a metallic sample object inside the autoclave, where air will be recirculated with velocity, pressure and temperature typically adopted for this type of treatments. The analysis takes advantage of parallel CFD simulations, conducted by using the open-source software openFOAM v2106. Two turbulence models have been adopted: one is the well-known Reynolds-Average Navier-Stokes approach (RANS), which is currently used to model the turbulence inside this type of machinery. The second one is the Delayed Detached Eddy Simulations (DDES), which allows the full resolution of the majority of turbulent scales around the sample object. First, we propose the difference between the local heat flux distribution at the air/solid interface computed by using RANS and DDES, next we analyse the overall heat flux entering the sample object: the resolution of the turbulent scales does not influence the local heat flux only, but also the overall heat flux entering the object; an average increase of 35% is reported when the velocity fluctuations are neglected. Future steps of the research foresee the analysis of the heat flux and temperature distributions on the surface of realistic shapes and common-use CFRP. Afterwards, the autoclave design will be optimized by adding multiple inlets and aerodynamic devices to guarantee a more homogeneous heat flux distribution on the surface of realistic shapes of actual CFRP

    Energy and water vapor transport in a turbulent stratified environment

    Get PDF
    We present direct numerical simulations about the transport of kinetic energy and unsaturated water vapor across a thin layer which separates two decaying turbulent flows with different energy. This interface lies in a shearless stratified environment modeled by means of Boussinesq’s approximation. Water vapor is treated as a passive scalar (Kumar et al. 2014). Initial conditions have Fr2 between 0.64 and 64 (stable case) and between -3.2 and -19 (unstable case) and Re_lambda = 250. Dry air is in the lower half of the domain and has a higher turbulent energy, seven times higher than the energy of moist air in the upper half. In the early stage of evolution, as long as Fr^2 > 1, stratification plays a minor role and the flows follows closely neutral stratification mixing. As the buoyancy terms grows, Fr2 ~ O(1), the mixing process deeply changes. A stable stratification generates a separation layer which blocks the entrainment of dry air into the moist one, characterized by a relative increment of the turbulent dissipation rate compared to the local turbulent energy. On the contrary, an unstable stratification sligthy enhances the entrainment. Growth-decay of energy and mixing layer thichness are discussed and compared with laboratory and numerical experiments

    Energy and water vapor transport across a simplified cloud-clear energy air interface

    Get PDF
    We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range of the atmospheric boundary layer as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this situation, the mixing layer contains two interfacial regions with opposite kinetic energy gradient, which in turn produces two intermittent sublayers in the velocity fluctuations field. This changes the structure of the field with respect to the corresponding non-stratified shearless mixing: the communication between the two turbulent region is weak, and the growth of the mixing layer stops. These results are discussed with respect to Large Eddy Simulations data for the Planetary Boundary Layers
    • 

    corecore