9 research outputs found

    Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children.

    No full text
    AIMS/HYPOTHESIS: Islet autoantibody-positive children progress to type 1 diabetes at variable rates. In our study, we asked whether characteristic autoantibody and/or gene profiles could be defined for phenotypes showing extreme progression. METHODS: Autoantibodies to insulin (IAA), GAD (GADA), insulinoma-associated antigen-2 (IA-2A) and zinc transporter 8 (ZnT8A) were measured in follow-up sera, and genotyping for type 1 diabetes susceptibility genes (HLA-DR/HLA-DQ, INS variable number of tandem repeats [VNTR] and single nucleotide polymorphisms at PTPN22, PTPN2, ERBB3, IL2, SH2B3, CTLA4, IFIH1, KIAA0350 [also known as CLEC16A], CD25, IL18RAP, IL10, COBL) was performed on the DNA samples of children born to a parent with type 1 diabetes and prospectively followed from birth for up to 22 years. RESULTS: Of the 1,650 children followed, 23 developed multiple autoantibodies and progressed to diabetes within 3 years (rapid progressors), while 24 children developed multiple autoantibodies and remained non-diabetic for more than 10 years from seroconversion (slow progressors). Rapid and slow progressors were similar with respect to HLA-DR/HLA-DQ genotypes, development of IAA, GADA and ZnT8A, and progression to multiple autoantibodies. In contrast, IA-2A development was considerably delayed in the slow progressors. Furthermore, both groups were effectively distinguished by the combined presence or absence of type 1 diabetes susceptibility alleles of non-HLA genes, most notably IL2, CD25, INS VNTR, IL18RAP, IL10, IFIH1 and PTPN22, and discrimination was improved among children carrying high-risk HLA-DR/HLA-DQ genotypes. CONCLUSIONS/INTERPRETATION: Our data suggest that genotypes of non-HLA type 1 diabetes susceptibility genes influence the likelihood or rate of diabetes progression among children with multiple islet autoantibodies. &nbsp

    Human papilloma virus is not detectable in samples of urothelial bladder cancer in a central European population: A prospective translational study.

    Get PDF
    Background: Previous investigations on the association of human papillomavirus (HPV) and human bladder cancer have led to conflicting results. The aim of this study was to determine if low and high risk HPV play a role in the etiology of superficial low grade and invasive high grade urothelial carcinoma of the bladder. Methods: We prospectively collected tumor samples of urothelial carcinoma of the bladder from 109 patients treated with transurethral resection or cystectomy, with bladder tissue from transurethral resection of the prostate serving as control. Unfixed, frozen tumor samples were analyzed for the presence of 14 high risk HPV types using real time PCR. Additionally, all specimens were tested for 35 low risk HPV types with a conventional PCR using degenerate primers located in the L1 region. Six frozen samples of cervical carcinoma served as positive controls. Results: We included 109 cases of bladder cancer with 41 superficial (pTa low grade) tumors, 56 invasive (pT1-T4) high grade tumors and 12 others (pTa high grade + pTis). We have not detected HPV-DNA in any sample (95 % Confidence Interval [CI] 0-3.3 %), superficial tumors (95 % CI 0-6.4 %) or in invasive tumors (95 % CI 0-8.6 %) with correct positive controls. Conclusions: Using a broad, sensitive assay with prospectively collected specimens of a Central European population we could not detect HPV-DNA in any of the cases. Our results suggest that it is unlikely that HPV infections play a major role in the development of urothelial bladder cancer
    corecore