28 research outputs found

    Fine Tuning of the Lactate and Diacetyl Production through Promoter Engineering in Lactococcus lactis

    Get PDF
    Lactococcus lactis is a well-studied bacterium widely used in dairy fermentation and capable of producing metabolites with organoleptic and nutritional characteristics. For fine tuning of the distribution of glycolytic flux at the pyruvate branch from lactate to diacetyl and balancing the production of the two metabolites under aerobic conditions, a constitutive promoter library was constructed by randomizing the promoter sequence of the H2O-forming NADH oxidase gene in L. lactis. The library consisted of 30 promoters covering a wide range of activities from 7,000 to 380,000 relative fluorescence units using a green fluorescent protein as reporter. Eleven typical promoters of the library were selected for the constitutive expression of the H2O-forming NADH oxidase gene in L. lactis, and the NADH oxidase activity increased from 9.43 to 58.17-fold of the wild-type strain in small steps of activity change under aerobic conditions. Meanwhile, the lactate yield decreased from 21.15±0.08 mM to 9.94±0.07 mM, and the corresponding diacetyl production increased from 1.07±0.03 mM to 4.16±0.06 mM with the intracellular NADH/NAD+ ratios varying from 0.711±0.005 to 0.383±0.003. The results indicated that the reduced pyruvate to lactate flux was rerouted to the diacetyl with an almost linear flux variation via altered NADH/NAD+ ratios. Therefore, we provided a novel strategy to precisely control the pyruvate distribution for fine tuning of the lactate and diacetyl production through promoter engineering in L. lactis. Interestingly, the increased H2O-forming NADH oxidase activity led to 76.95% lower H2O2 concentration in the recombinant strain than that of the wild-type strain after 24 h of aerated cultivation. The viable cells were significantly elevated by four orders of magnitude within 28 days of storage at 4°C, suggesting that the increased enzyme activity could eliminate H2O2 accumulation and prolong cell survival

    The Epigenetic Trans-Silencing Effect in Drosophila Involves Maternally-Transmitted Small RNAs Whose Production Depends on the piRNA Pathway and HP1

    Get PDF
    BACKGROUND: The study of P transposable element repression in Drosophila melanogaster led to the discovery of the Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, "TAS") has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. Phenotypic and genetic analysis have shown that TSE exhibits variegation in ovaries, displays a maternal effect as well as epigenetic transmission through meiosis and involves heterochromatin (including HP1) and RNA silencing. PRINCIPAL FINDINGS: Here, we show that mutations in squash and zucchini, which are involved in the piwi-interacting RNA (piRNA) silencing pathway, strongly affect TSE. In addition, we carried out a molecular analysis of TSE and show that silencing is correlated to the accumulation of lacZ small RNAs in ovaries. Finally, we show that the production of these small RNAs is sensitive to mutations affecting squash and zucchini, as well as to the dose of HP1. CONCLUSIONS AND SIGNIFICANCE: Thus, our results indicate that the TSE represents a bona fide piRNA-based repression. In addition, the sensitivity of TSE to HP1 dose suggests that in Drosophila, as previously shown in Schizosaccharomyces pombe, a RNA silencing pathway can depend on heterochromatin components

    Telomeric Trans-Silencing in Drosophila melanogaster: Tissue Specificity, Development and Functional Interactions between Non-Homologous Telomeres

    Get PDF
    BACKGROUND: The study of P element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, "TAS") has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. TSE can show variegation in ovaries, displays a maternal effect as well as an epigenetic transmission through meiosis and involves heterochromatin and RNA silencing pathways. PRINCIPAL FINDINGS: Here, we analyze phenotypic and genetic properties of TSE. We report that TSE does not occur in the soma at the adult stage, but appears restricted to the female germline. It is detectable during development at the third instar larvae where it presents the same tissue specificity and maternal effect as in adults. Transgenes located in TAS at the telomeres of the main chromosomes can be silencers which in each case show the maternal effect. Silencers located at non-homologous telomeres functionally interact since they stimulate each other via the maternally-transmitted component. All germinally-expressed euchromatic transgenes tested, located on all major chromosomes, were found to be repressed by a telomeric silencer: thus we detected no TSE escaper. The presence of the euchromatic target transgene is not necessary to establish the maternal inheritance of TSE, responsible for its epigenetic behavior. A single telomeric silencer locus can simultaneously repress two P-lacZ targets located on different chromosomal arms. CONCLUSIONS AND SIGNIFICANCE: Therefore TSE appears to be a widespread phenomenon which can involve different telomeres and work across the genome. It can explain the P cytotype establishment by telomeric P elements in natural Drosophila populations

    A Long Terminal Repeat-Containing Retrotransposon of Schizosaccharomyces pombe Expresses a Gag-Like Protein That Assembles into Virus-Like Particles Which Mediate Reverse Transcription

    No full text
    The Tf1 element of Schizosaccharomyces pombe is a long terminal repeat-containing retrotransposon that encodes functional protease, reverse transcriptase, and integrase proteins. Although these proteins are known to be necessary for protein processing, reverse transcription, and integration, respectively, the function of the protein thought to be Gag has not been determined. We present here the first electron microscopy of Tf1 particles. We tested whether the putative Gag of Tf1 was required for particle formation, packaging of RNA, and reverse transcription. We generated deletions of 10 amino acids in each of the four hydrophilic domains of the protein and found that all four mutations reduced transposition activity. The N-terminal deletion removed a nuclear localization signal and inhibited nuclear import of the transposon. The two mutations in the center of Gag destabilized the protein and resulted in no virus-like particles. The C-terminal deletion caused a defect in RNA packaging and, as a result, low levels of cDNA. The electron microscopy of cells expressing a truncated Tf1 showed that Gag alone was sufficient for the formation of virus-like particles. Taken together, these results indicate that Tf1 encodes a Gag protein that is a functional equivalent of the Gag proteins of retroviruses

    Proviral amplification of the Gypsy endogenous retrovirus of Drosophila melanogaster involves env-independent invasion of the female germline.

    No full text
    Gypsy is an infectious endogenous retrovirus of Drosophila melanogaster. The gypsy proviruses replicate very efficiently in the genome of the progeny of females homozygous for permissive alleles of the flamenco gene. This replicative transposition is correlated with derepression of gypsy expression, specifically in the somatic cells of the ovaries of the permissive mothers. The determinism of this amplification was studied further by making chimeric mothers containing different permissive/restrictive and somatic/germinal lineages. We show here that the derepression of active proviruses in the permissive soma is necessary and sufficient to induce proviral insertions in the progeny, even if the F1 flies derive from restrictive germ cells devoid of active proviruses. Therefore, gypsy endogenous multiplication results from the transfer of some gypsy-encoded genetic material from the soma towards the germen of the mother and its subsequent insertion into the chromosomes of the progeny. This transfer, however, is not likely to result from retroviral infection of the germline. Indeed, we also show here that the insertion of a tagged gypsy element, mutant for the env gene, occurs at high frequency, independently of the production of gypsy Env proteins by any transcomplementing helper. The possible role of the env gene for horizontal transfer to new hosts is discussed
    corecore