86 research outputs found

    Assessment of Potential Augmentation and Management Strategies for Razorback Sucker \u3cem\u3eXyrauchen texanus\u3c/em\u3e in Lake Mead and Grand Canyon: A 2021 Science Panel Summary

    Get PDF
    Razorback Sucker Xyrauchen texanus is a large-bodied, long-lived species endemic to the Colorado River Basin. This species historically ranged throughout the basin from the Colorado River delta in Mexico to Wyoming and Colorado. Currently, the species persists ,in a small portion of its historical range with the help of intensive management efforts including augmentation. Recruitment to adult life stages is extremely limited in the wild, but is documented consistently in Lake Mead. Research and monitoring efforts in Lake Mead are ongoing since 1996 and have recently expanded to include the Colorado River inflow area and portions of lower Grand Canyon. Despite evidence of recruitment, the current population size in Lake Mead and Grand Canyon is believed to be small (data) and susceptible to stochastic effects. This raised interest in the potential to augment the population to prevent loss of genetic diversity and increase abundance and distribution in general, as well as explore recruitment bottlenecks. To address critical uncertainties surrounding this management option and to brainstorm other potential options, a Planning Committee and Steering Committee made up of representatives of state (Arizona, Nevada), tribal (Hualapai Tribe, Navajo Nation), and federal (Bureau of Reclamation, National Park Service, and U.S. Fish and Wildlife Service) management agencies convened an Expert Science Panel (ESP; 2021), to consider augmentation and management strategies for Razorback Sucker in Lake Mead and Grand Canyon. The purpose of this report is to summarize those findings

    Peroxisome Proliferator-Activated Receptor-Gamma Agonists Suppress Tissue Factor Overexpression in Rat Balloon Injury Model with Paclitaxel Infusion

    Get PDF
    The role and underlying mechanisms of rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-Îł) agonist, on myocardial infarction are poorly understood. We investigated the effects of this PPAR-Îł agonist on the expression of tissue factor (TF), a primary molecule for thrombosis, and elucidated its underlying mechanisms. The PPAR-Îł agonist inhibited TF expression in response to TNF-α in human umbilical vein endothelial cells, human monocytic leukemia cell line, and human umbilical arterial smooth muscle cells. The overexpression of TF was mediated by increased phosphorylation of mitogen-activated protein kinase (MAPK), which was blocked by the PPAR-Îł agonist. The effective MAPK differed depending on each cell type. Luciferase and ChIP assays showed that transcription factor, activator protein-1 (AP-1), was a pivotal target of the PPAR-Îł agonist to lower TF transcription. Intriguingly, two main drugs for drug-eluting stent, paclitaxel or rapamycin, significantly exaggerated thrombin-induced TF expression, which was also effectively blocked by the PPAR-Îł agonist in all cell types. This PPAR-Îł agonist did not impair TF pathway inhibitor (TFPI) in three cell types. In rat balloon injury model (Sprague-Dawley rats, n = 10/group) with continuous paclitaxel infusion, the PPAR-Îł agonist attenuated TF expression by 70±5% (n = 4; P<0.0001) in injured vasculature. Taken together, rosiglitazone reduced TF expression in three critical cell types involved in vascular thrombus formation via MAPK and AP-1 inhibitions. Also, this PPAR-Îł agonist reversed the paclitaxel-induced aggravation of TF expression, which suggests a possibility that the benefits might outweigh its risks in a group of patients with paclitaxel-eluting stent implanted

    Growth and Development and Their Relation to Musculoskeletal Conditions

    No full text

    Acute myocardial infarction after botulinum toxin injection

    Full text link

    Connecting non-destructive fiber dispersion measurements with tensile HPFRCC behaviour

    No full text
    Successful application with advanced fiber reinforced cement based materials relies on reliable design prescriptions and design-oriented test methodologies for the identification of relevant material properties, together with consistent and effective quality control procedures. The “randomly uniform” dispersion of fibers within a structural element is a crucial issue to be tackled, which, if not achieved, may lead to the activation of unanticipated failure mechanisms, thus lowering the load bearing capacity and jeopardizing the structural performance. It is henceforth evident that non-destructive techniques for fiber dispersion monitoring need to be developed and calibrated, as it has been going on for at least the last lustrum, and their outcomes to be effectively correlated to the mechanical performance of the material. In this paper a non-destructive method based on the magnetic properties of the composite has been applied to monitor the fiber dispersion and orientation in HPFRCC slabs. The results have been correlated to the tensile behaviour, measured according to the newly conceived “Double Edge Wedge Splitting” technique. The work herein presented stands as a step towards the assessment of non-destructive methods for fiber dispersion monitoring and their inclusion into a sound quality control procedure in a design oriented perspective
    • 

    corecore