1,434 research outputs found

    Warped product approach to universe with non-smooth scale factor

    Full text link
    In the framework of Lorentzian warped products, we study the Friedmann-Robertson-Walker cosmological model to investigate non-smooth curvatures associated with multiple discontinuities involved in the evolution of the universe. In particular we analyze non-smooth features of the spatially flat Friedmann-Robertson-Walker universe by introducing double discontinuities occurred at the radiation-matter and matter-lambda phase transitions in astrophysical phenomenology.Comment: 10 page

    Global behavior of solutions to the static spherically symmetric EYM equations

    Get PDF
    The set of all possible spherically symmetric magnetic static Einstein-Yang-Mills field equations for an arbitrary compact semi-simple gauge group GG was classified in two previous papers. Local analytic solutions near the center and a black hole horizon as well as those that are analytic and bounded near infinity were shown to exist. Some globally bounded solutions are also known to exist because they can be obtained by embedding solutions for the G=SU(2)G=SU(2) case which is well understood. Here we derive some asymptotic properties of an arbitrary global solution, namely one that exists locally near a radial value r0r_{0}, has positive mass m(r)m(r) at r0r_{0} and develops no horizon for all r>r0r>r_{0}. The set of asymptotic values of the Yang-Mills potential (in a suitable well defined gauge) is shown to be finite in the so-called regular case, but may form a more complicated real variety for models obtained from irregular rotation group actions.Comment: 43 page

    Erratum

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46187/1/205_2004_Article_BF00249672.pd

    Geometrical optics and the corner problem

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46196/1/205_2004_Article_BF00279820.pd

    Existence of positive solutions for semilinear elliptic equations in general domains

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46209/1/205_2004_Article_BF00251173.pd

    Pulsating Front Speed-up and Quenching of Reaction by Fast Advection

    Full text link
    We consider reaction-diffusion equations with combustion-type non-linearities in two dimensions and study speed-up of their pulsating fronts by general periodic incompressible flows with a cellular structure. We show that the occurence of front speed-up in the sense limAc(A)=\lim_{A\to\infty} c_*(A)=\infty, with AA the amplitude of the flow and c(A)c_*(A) the (minimal) front speed, only depends on the geometry of the flow and not on the reaction function. In particular, front speed-up happens for KPP reactions if and only if it does for ignition reactions. We also show that the flows which achieve this speed-up are precisely those which, when scaled properly, are able to quench any ignition reaction.Comment: 16p

    Quenching and Propagation of Combustion Without Ignition Temperature Cutoff

    Full text link
    We study a reaction-diffusion equation in the cylinder Ω=R×Tm\Omega = \mathbb{R}\times\mathbb{T}^m, with combustion-type reaction term without ignition temperature cutoff, and in the presence of a periodic flow. We show that if the reaction function decays as a power of TT larger than three as T0T\to 0 and the initial datum is small, then the flame is extinguished -- the solution quenches. If, on the other hand, the power of decay is smaller than three or initial datum is large, then quenching does not happen, and the burning region spreads linearly in time. This extends results of Aronson-Weinberger for the no-flow case. We also consider shear flows with large amplitude and show that if the reaction power-law decay is larger than three and the flow has only small plateaux (connected domains where it is constant), then any compactly supported initial datum is quenched when the flow amplitude is large enough (which is not true if the power is smaller than three or in the presence of a large plateau). This extends results of Constantin-Kiselev-Ryzhik for combustion with ignition temperature cutoff. Our work carries over to the case Ω=Rn×Tm\Omega = \mathbb{R}^n\times\mathbb{T}^m, when the critical power is 1+2/n1 + 2/n, as well as to certain non-periodic flows

    SBV Regularity for Genuinely Nonlinear, Strictly Hyperbolic Systems of Conservation Laws in one space dimension

    Get PDF
    We prove that if tu(t)BV(R)t \mapsto u(t) \in \mathrm {BV}(\R) is the entropy solution to a N×NN \times N strictly hyperbolic system of conservation laws with genuinely nonlinear characteristic fields ut+f(u)x=0, u_t + f(u)_x = 0, then up to a countable set of times {tn}nN\{t_n\}_{n \in \mathbb N} the function u(t)u(t) is in SBV\mathrm {SBV}, i.e. its distributional derivative uxu_x is a measure with no Cantorian part. The proof is based on the decomposition of ux(t)u_x(t) into waves belonging to the characteristic families u(t)=i=1Nvi(t)r~i(t),vi(t)M(R), r~i(t)RN, u(t) = \sum_{i=1}^N v_i(t) \tilde r_i(t), \quad v_i(t) \in \mathcal M(\R), \ \tilde r_i(t) \in \mathrm R^N, and the balance of the continuous/jump part of the measures viv_i in regions bounded by characteristics. To this aim, a new interaction measure \mu_{i,\jump} is introduced, controlling the creation of atoms in the measure vi(t)v_i(t). The main argument of the proof is that for all tt where the Cantorian part of viv_i is not 0, either the Glimm functional has a downward jump, or there is a cancellation of waves or the measure μi,jump\mu_{i,\mathrm{jump}} is positive

    Existence and Nonlinear Stability of Rotating Star Solutions of the Compressible Euler-Poisson Equations

    Full text link
    We prove existence of rotating star solutions which are steady-state solutions of the compressible isentropic Euler-Poisson (EP) equations in 3 spatial dimensions, with prescribed angular momentum and total mass. This problem can be formulated as a variational problem of finding a minimizer of an energy functional in a broader class of functions having less symmetry than those functions considered in the classical Auchmuty-Beals paper. We prove the nonlinear dynamical stability of these solutions with perturbations having the same total mass and symmetry as the rotating star solution. We also prove local in time stability of W^{1, \infty}(\RR^3) solutions where the perturbations are entropy-weak solutions of the EP equations. Finally, we give a uniform (in time) a-priori estimate for entropy-weak solutions of the EP equations
    corecore