1,024 research outputs found
Exciton properties and optical spectra of light harvesting complex II from a fully atomistic description
We present a fully atomistic simulation of linear optical spectra (absorption, fluorescence and circular dichroism) of the Light Harvesting Complex II (LHCII) trimer using a hybrid approach, which couples a quantum chemical description of the chlorophylls with a classical model for the protein and the external environment (membrane and water). The classical model uses a polarizable Molecular Mechanics force field, thus allowing mutual polarization effects in the calculations of the excitonic properties. The investigation is performed both on the crystal structure and on structures generated by a μs long classical molecular dynamics simulation of the complex within a solvated membrane. The results show that this integrated approach not only provides a good description of the excitonic properties and optical spectra without the need for additional refinements of the excitonic parameters, but it also allows an atomistic investigation of the relative importance of electronic, structural and environment effects in determining the optical spectra
Atomic Force Microscopy Study of Nano-Physiological Response of Ladybird Beetles to Photostimuli
Background: Insects are of interest not only as the most numerous and diverse group of animals but also as highly efficient bio-machines varying greatly in size. They are the main human competitors for crop, can transmit various diseases, etc. However, little study of insects with modern nanotechnology tools has been done. Methodology/Principal Findings: Here we applied an atomic force microscopy (AFM) method to study stimulation of ladybird beetles with light. This method allows for measuring of the internal physiological responses of insects by recording surface oscillations in different parts of the insect at sub-nanometer amplitude level and sub-millisecond time. Specifically, we studied the sensitivity of ladybird beetles to light of different wavelengths. We demonstrated previously unknown blindness of ladybird beetles to emerald color (,500nm) light, while being able to see UV-blue and green light. Furthermore, we showed how one could study the speed of the beetle adaptation to repetitive flashing light and its relaxation back to the initial stage. Conclusions: The results show the potential of the method in studying insects. We see this research as a part of what might be a new emerging area of ‘‘nanophysiology’ ’ of insects
Structure of the stress-related LHCSR1 complex determined by an integrated computational strategy
Light-harvesting complexes (LHCs) are pigment-protein complexes whose main function is to capture sunlight and transfer the energy to reaction centers of photosystems. In response to varying light conditions, LH complexes also play photoregulation and photoprotection roles. In algae and mosses, a sub-family of LHCs, light-harvesting complex stress-related (LHCSR), is responsible for photoprotective quenching. Despite their functional and evolutionary importance, no direct structural information on LHCSRs is available that can explain their unique properties. In this work, we propose a structural model of LHCSR1 from the moss P. patens, obtained through an integrated computational strategy that combines homology modeling, molecular dynamics, and multiscale quantum chemical calculations. The model is validated by reproducing the spectral properties of LHCSR1. Our model reveals the structural specificity of LHCSR1, as compared with the CP29 LH complex, and poses the basis for understanding photoprotective quenching in mosses
Ensemble of Hankel Matrices for Face Emotion Recognition
In this paper, a face emotion is considered as the result of the composition
of multiple concurrent signals, each corresponding to the movements of a
specific facial muscle. These concurrent signals are represented by means of a
set of multi-scale appearance features that might be correlated with one or
more concurrent signals. The extraction of these appearance features from a
sequence of face images yields to a set of time series. This paper proposes to
use the dynamics regulating each appearance feature time series to recognize
among different face emotions. To this purpose, an ensemble of Hankel matrices
corresponding to the extracted time series is used for emotion classification
within a framework that combines nearest neighbor and a majority vote schema.
Experimental results on a public available dataset shows that the adopted
representation is promising and yields state-of-the-art accuracy in emotion
classification.Comment: Paper to appear in Proc. of ICIAP 2015. arXiv admin note: text
overlap with arXiv:1506.0500
Highly versatile atomic micro traps generated by multifrequency magnetic field modulation
We propose the realization of custom-designed adiabatic potentials for cold
atoms based on multimode radio frequency radiation in combination with static
inhomogeneous magnetic fields. For example, the use of radio frequency combs
gives rise to periodic potentials acting as gratings for cold atoms. In strong
magnetic field gradients the lattice constant can be well below 1 micrometer.
By changing the frequencies of the comb in time the gratings can easily be
propagated in space, which may prove useful for Bragg scattering atomic matter
waves. Furthermore, almost arbitrarily shaped potential are possible such as
disordered potentials on a scale of several 100 nm or lattices with a spatially
varying lattice constant. The potentials can be made state selective and, in
the case of atomic mixtures, also species selective. This opens new
perspectives for generating tailored quantum systems based on ultra cold single
atoms or degenerate atomic and molecular quantum gases.Comment: 12 pages, 6 figure
Mycorrhization and root excision effects on morphological and biomass production of carob (Ceratonia siliqua L.)
Ceratonia siliqua L. plant (carob tree) is a Mediterranean species. In Tunisia, natural distribution of this species is situated in humid zones in the north to the driest ones in the south of the country. Ceratonia siliqua regeneration depends on seeds quality and performances as well as on the practical vegetative propagation tools. Nowadays, carob tree cultivation is limited by the seedlings quality behind the juvenile stage caused by the deterioration of plant root system. This study investigates the effect of lone and mutual root excision technique and mycorrhization on carob seedlings growth performance. Two carob seeds origins were germinated then excised and/or mycorrhized using a sterile substate. For control seedlings, experiment was made without excision nor mycorrhization application. Seedlings were grown in green house. Mycorrhizae applied with excision ameliorated significantly plant length, leaf number, dry and fresh weight of external plant part and roots, collar root diameter and roots branching numbers. Survey of mycorrhizae effects proved also amelioration on carob growth and biomass production but indiscernibly than use of mycorrhization and excision techniques together. Excision alone does not take a part on seedling increasing performance. Mycorrhization of carob species applied with excision increased morphological plant status. Results highlighted the efficiency to use this process to promote plants behaviour by enhancing plant roots and growth in forest farming model in forest areas and agricultural lands
Comparative Analysis of Melt Pool Evolution in Selective Laser Melting of Inconel 625 and Inconel 718 Nickel-Based Superalloys
One of the key advantages of Additive Manufacturing is the versatility in working with a wide range of materials. Among these materials, Nickel-based superalloys have drawn great attention of specialists. This study investigates the behavior of Inconel 625 and Inconel 718 during selective laser melting. While these alloys have many similarities, thus their distinct chemical compositions determine different responses to this new process, which the authors aimed to elucidate in this study. Numerical simulations using ANSYS Additive® software were conducted to compare the melt pool dimensions (depth and width) of Inconel 625 and Inconel 718. The results reveal that the material's thermal properties play a significant role in determining the melt pool geometry. The Inconel 718 consistently exhibited larger melt pool dimensions than Inconel 625. The findings highlight the importance of understanding the connection between the material properties and process parameters
Parameters Selection for the Production of Fully Dense Metals Processed by Selective Laser Melting
Selective laser melting (SLM) presents significant assets for both industrial and academic fields. However, the process parameters selection is yet challenging. It presents tens of parameters to be carefully selected, including laser power and speed, bed thickness, hatching space, and other parameters, for the manufacturing of parts with high density. This paper provides a deeper understanding of the processing parameters’ effect on the evolution of the product’s density. A series of numerical simulations of porosity is achieved on Ansys Additive© software and it shows the evolution of the relative density at different laser powers and scan speeds. Numerical results show that low laser power and accelerated scan lead to the generation of a small melt pool, and consequently low density. In the opposite case, at high power and slow scan, the created melt pool is wide enough to avoid porosity and generate fully dense products. The product density is proportionally related to the melt pool size. Hence, it could be estimated through the correlation with the melt pool width, which enables the perfect selection of the hatching space for the selected set of parameters
Recommendations for core critical care ultrasound competencies as a part of specialist training in multidisciplinary intensive care: a framework proposed by the European Society of Intensive Care Medicine (ESICM)
© 2020 The Author(s). Critical care ultrasound (CCUS) is an essential component of intensive care practice. Although existing international guidelines have focused on training principles and determining competency in CCUS, few countries have managed to operationalize this guidance into an accessible, well-structured programme for clinicians training in multidisciplinary intensive care. We seek to update and reaffirm appropriate CCUS scope so that it may be integrated into the international Competency-based Training in Intensive Care Medicine. The resulting recommendations offer the most contemporary and evolved set of core CCUS competencies for an intensive care clinician yet described. Importantly, we discuss the rationale for inclusion but also exclusion of competencies listed. Background/aim: Critical care ultrasound (CCUS) is an essential component of intensive care practice. The purpose of this consensus document is to determine those CCUS competencies that should be a mandatory part of training in multidisciplinary intensive care. Methods: A three-round Delphi method followed by face-to-face meeting among 32 CCUS experts nominated by the European Society of Intensive Care Medicine. Agreement of at least 90% of experts was needed in order to enlist a competency as mandatory. Results: The final list of competencies includes 15 echocardiographic, 5 thoracic, 4 abdominal, deep vein thrombosis diagnosis and central venous access aid. Conclusion: The resulting recommendations offer the most contemporary and evolved set of core CCUS competencies for an intensive care clinician yet described
- …