35,803 research outputs found
D-Brane Dynamics in Dp-Brane Background
By using Dirac-Born-Infeld action we study the real time dynamics of D-branes
in the vicinity of a stack of Dp-branes where the role of the tachyon of the
open string models is played by the radial mode on the D-branes. We examine the
behaviour of the tachyon potential and study the hamiltonian formulation and
classical solutions of such systems. We also study the homogeneous solutions of
the classical equations of motion in these cases.Comment: 14 pages, minor modifications, to appear in Phys. Lett.
D0-brane tension in string field theory
We compute the D0-brane tension in string field theory by representing it as
a tachyon lump of the D1-brane compactified on a circle of radius . To this
aim, we calculate the lump solution in level truncation up to level L=8. The
normalized D0-brane tension is independent on . The compactification radius
is therefore chosen in order to cancel the subleading correction . We
show that an optimal radius indeed exists and that at the
theoretical prediction for the tension is reproduced at the level of .
As a byproduct of our calculation we also discuss the determination of the
marginal tachyon field at .Comment: 13 pages, 3 Eps figure
Time-localized projectors in String Field Theory with E-field
We extend the analysis of hep-th/0409063 to the case of a constant electric
field turned on the worldvolume and on a transverse direction of a D-brane. We
show that time localization is still obtained by inverting the discrete
eigenvalues of the lump solution. The lifetime of the unstable soliton is shown
to depend on two free parameters: the b-parameter and the value of the electric
field. As a by-product, we construct the normalized diagonal basis of the star
algebra in -field background.Comment: 27 +1 pages, v2: references added, typos correcte
Lattice vibrations in high-pressure phases of LiYF
Possible variations in the dynamical behaviour of LiYF due to its
several structural changes under pressure are examined by making use of the
complementary techniques of quasi-harmonic lattice dynamics and molecular
dynamics simulations. The phonon spectra in the entire Brillouin zone together
with the respective Gibbs free energies are calculated for the three
high-pressure polymorphs of LiYF (that are stable at T = 0) with a view
to better understand their relative stabilities as functions of pressure and
temperature. The present work predicts anomalous thermal expansion at low
temperatures in phases I and IIa while irreversibilty of phase II phase
III transition on subsequent pressure release. Molecular dynamics simulations
provide qualitative impressions about a temperature-driven second-order
transition and also of kinetic effects in the subsequent pressure-driven
first-order phase transformation.Comment: 13 page
Time Delay Induced Death in Coupled Limit Cycle Oscillators
We investigate the dynamical behaviour of two limit cycle oscillators that
interact with each other via time delayed coupling and find that time delay can
lead to amplitude death of the oscillators even if they have the same
frequency. We demonstrate that this novel regime of amplitude "death" also
exists for large collections of coupled identical oscillators and provide
quantitative measures of this death region in the parameter space of coupling
strength and time delay. Its implication for certain biological and physical
applications is also pointed out.Comment: 4 aps formatted revtex pages; 3 figures; to be published in Phys.
Rev. Let
Cosmology in scalar tensor theory and asymptotically de-Sitter Universe
We have investigated the cosmological scenarios with a four dimensional
effective action which is connected with multidimensional, supergravity and
string theories. The solution for the scale factor is such that initially
universe undergoes a decelerated expansion but in late times it enters into the
accelerated expansion phase. Infact, it asymptotically becomes a de-Sitter
universe. The dilaton field in our model is a decreasing function of time and
it becomes a constant in late time resulting the exit from the scalar tensor
theory to the standard Einstein's gravity. Also the dilaton field results the
existence of a positive cosmological constant in late times.Comment: 7 pages, Revtex Style, 6 Postscript figure
Tachyon condensation on brane sphalerons
We consider a sphaleron solution in field theory that provides a toy model
for unstable D-branes of string theory. We investigate the tachyon condensation
on a Dp-brane. The localized modes, including a tachyon, arise in the spectrum
of a sphaleron solution of a \phi^4 field theory on M^{p+1}\times S^1. We use
these modes to find a multiscalar tachyon potential living on the sphaleron
world-volume. A complete cancelation between brane tension and the minimum of
the tachyon potential is found as the size of the circle becomes small.Comment: To appear in JHEP, 13 pages, 2 eps figures, minor changes and
references adde
Morse Theory and the Topology of Configuration Space
The first and second homology groups are computed for configuration spaces of
framed three-dimensional point particles with annihilation included, when up to
two particles and an antiparticle are present
Exponential reduction of finite volume effects with twisted boundary conditions
Flavor-twisted boundary conditions can be used for exponential reduction of
finite volume artifacts in flavor-averaged observables in lattice QCD
calculations with light quark flavor symmetry. Finite volume artifact
reduction arises from destructive interference effects in a manner closely
related to the phase averaging which leads to large volume independence.
With a particular choice of flavor-twisted boundary conditions, finite volume
artifacts for flavor-singlet observables in a hypercubic spacetime volume are
reduced to the size of finite volume artifacts in a spacetime volume with
periodic boundary conditions that is four times larger.Comment: 18 pages, no figure
Dynamics with Infinitely Many Time Derivatives and Rolling Tachyons
Both in string field theory and in p-adic string theory the equations of
motion involve infinite number of time derivatives. We argue that the initial
value problem is qualitatively different from that obtained in the limit of
many time derivatives in that the space of initial conditions becomes strongly
constrained. We calculate the energy-momentum tensor and study in detail time
dependent solutions representing tachyons rolling on the p-adic string theory
potentials. For even potentials we find surprising small oscillations at the
tachyon vacuum. These are not conventional physical states but rather
anharmonic oscillations with a nontrivial frequency--amplitude relation. When
the potentials are not even, small oscillatory solutions around the bottom must
grow in amplitude without a bound. Open string field theory resembles this
latter case, the tachyon rolls to the bottom and ever growing oscillations
ensue. We discuss the significance of these results for the issues of emerging
closed strings and tachyon matter.Comment: 46 pages, 14 figures, LaTeX. Replaced version: Minor typos corrected,
some figures edited for clarit
- …
