3,067 research outputs found

    Reliability of Strength and Performance Testing Measures and Their Ability to Differentiate Persons with and without Shoulder Symptoms

    Get PDF
    BACKGROUND: Upper extremity physical performance measures exist but none have been universally accepted as the primary means of gauging readiness to return to activity following rehabilitation. Few reports have described reliability and/or differences in outcome with physical performance measures between individuals with and without shoulder symptoms. HYPOTHESES/PURPOSE: The purpose of this study was to establish the reliability of traditional upper extremity strength testing and the CKCUEST in persons with and without shoulder symptoms as well as to determine if the testing maneuvers could discriminate between individuals with and without shoulder symptoms. The authors hypothesized that strength and physical performance testing would have excellent test/re-test reliability for individuals with and without shoulder symptoms and that the physical performance maneuver would be able to discriminate between individuals with and without shoulder symptoms. METHODS: Male and female subjects 18-50 years of age were recruited for testing. Subjects were screened and placed into groups based on the presence (Symptomatic Group) or absence of shoulder symptoms (Asymptomatic Group). Each subject performed an isometric strength task, a task designed to estimate 1-repetition maximum (RM) lifting in the plane of the scapula, and the closed kinetic chain upper extremity stability test (CKCUEST) during two sessions 7-10 days apart. Test/re-test reliability was calculated for all three tasks. Independent t-tests were utilized for between group comparisons to determine if a performance task could discriminate between persons with and without shoulder symptoms. RESULTS: Thirty-six subjects (18/group) completed both sessions. Test/re-test reliability for each task was excellent for both groups (intraclass correlations ≄ .85 for all tasks). Neither strength task could discriminate between subjects in either group. Subjects with shoulder symptoms had 3% less touches per kilogram of body weight on the CKCUEST compared to subjects without shoulder symptoms but this was not statistically significantly different (p=.064). CONCLUSIONS: The excellent test/re-test reliability has now been expanded to include individuals with various reasons for shoulder symptoms. Traditional strength testing does not appear to be the ideal assessment method for making discharge and/or return to activity decisions due to the inability to discriminate between the groups. The CKCUEST could be utilized to determine readiness for activity as it was trending towards being discriminatory between known groups. LEVEL OF EVIDENCE: Basic Science Reliability Study, Level 3

    Different response to epidermal growth factor of hepatocytes in cultures isolated from male or female rat liver. Inhibitor effect of estrogen on binding and mitogenic effect of epidermal growth factor

    Get PDF
    Deoxyribonucleic acid (DNA) synthesis in hepatocytes isolated from the livers of male and female rats has been compared in monolayer culture. Plating efficiency, DNA and protein content, viability, and morphologic appearance were the same in cultures prepared with hepatocytes isolated from male or female rats. Epidermal growth factor (EGF)-induced DNA synthesis was significantly higher in hepatocytes from male rats than in hepatocytes from female rats. This was the case whether hepatocytes were isolated from normal or partially hepatectomized male or female rats. Hepatocytes isolated from regenerating liver synthesize more DNA than those isolated from normal liver in response to EGF. This increased response to EGF in hepatocytes derived from regenerating liver was relatively the same for male- and female-derived hepatocytes, but the magnitude of the response was considerably higher in male-derived hepatocytes. In contrast, in vivo DNA synthesis in the liver remnant after partial hepatectomy was similar in male and female rats if measured 24 h after the operation. A comparison of EGF binding to male- and female-derived hepatocytes maintained in primary culture indicated a lower number of high-affinity receptors for EGF in the female hepatocytes. The addition of estrogen to primary cultures of hepatocytes isolated from male rats inhibited EGF binding as well as EGF-induced DNA synthesis. Our studies show significant differences in DNA synthesis in response to EGF when male and female hepatocytes are compared in primary culture. The regenerative response after partial hepatectomy, on the other hand, was the same in male and female rats. Thus, our studies indicate that the sex of the donor rat is important when hepatocytes in culture are used for a variety of studies, such as hepatocyte metabolism, induction and control of DNA synthesis, and hepatocarcinogenesis. In addition, our results indicate that caution is advised when inferences are made from in vitro findings for in vivo conditions. © 1987

    Return to Swimming Protocol for Competitive Swimmers: A Post-Operative Case Study and Fundamentals

    Get PDF
    A large percentage of swimmers report shoulder pain during their swimming career. Shoulder pain in swimmers has been attributed to duration of swim practice, total yardage, and break down in stroke technique. Rehabilitation programs are generally land-based and cannot adequately address the intricacies of the swimming strokes. Return to swimming protocols (RTSP) that address progression of yardage are scarce, yet needed. The purpose of this clinical commentary is to familiarize the clinician with the culture and vernacular of swimming, and to provide a suggested yardage based RTSP for high school and collegiate level swimmers. LEVEL OF EVIDENCE: 5

    Fe-periclase reactivity at Earth's lower mantle conditions: Ab-initio geochemical modelling

    Get PDF
    Intrinsic and extrinsic stability of the (Mg,Fe)O solid mixture in the Fe-Mg-Si-O system at high P, T conditions relevant to the Earth\u2019s mantle is investigated by the combination of quantum mechanical calculations (Hartree- 26 Fock/DFT hybrid scheme), cluster expansion techniques and statistical thermodynamics. Iron in the (Mg,Fe)O binary mixture is assumed to be either in the low spin (LS) or in the high spin (HS) state. Un-mixing at solid state is observed only for the LS condition in the 23\u201342 GPa pressure range, whereas HS does not give rise to un-mixing. LS (Mg,Fe)O un-mixings are shown to be able to incorporate iron by subsolidus reactions with a reservoir of a virtual bridgmanite composition, for a maximum total enrichment of 0.22 FeO. At very high P (up to 130/3150 GPa/K), a predominant (0.7 phase proportion), iron-rich Fe-periclase mixture (Mg0.50Fe0.50)O is formed, and it coexists, at constrained phase composition conditions, with two iron-poor assemblages [(Mg0.90Fe0.10)O and (Mg0.825Fe0.175)O]. These theoretical results agree with the compositional variability and frequency of occurrence observed in lower mantle Fe-periclase from diamond inclusions and from HP-HT synthesis products. The density difference among the Fe-periclase phases increases up to 10%, between 24 and 130 GPa. The calculated bulk Fe/Mg partitioning coefficient between the bridgmanite reservoir and Fe-periclase, Kd, is 0.64 at 24 GPa; it then drops to 0.19 at 80 GPa, and becomes quasi-invariant (0.18\u20130.16) in the lowermost portion of the Earth\u2019s mantle (80\u2013 130 GPa). These Kd-values represent an approximate estimate for the Fe/Mg-partitioning between actual bridgmanite and Fe-periclase. Consequently, our Kd-values agree with experimental measurements and theoretical determinations, hinting that iron preferentially dissolves in periclase with respect to all the other iron-bearing phases of the lower mantle. The continuous change up to 80 GPa (2000 km depth) of the products (compositions and phase proportions) over the MgO-FeO binary causes geochemical heterogeneities throughout the lower mantle, but it does not give rise to any sharp discontinuity. In this view, anomalies like the ULVZs, explained with a local and abrupt change of density, do not seem primarily ascribable to the mixing behavior and reactivity of (Mg,Fe)O at subsolidus

    Clay-biosurfactant materials as functional drug delivery systems: Slowing down effect in the in vitro release of cinnamic acid

    Get PDF
    The main objectives of the present paper were the preparation and characterization of new surfactant-modified clays and the evaluation of their potential applicability as drug delivery systems for the oral administration of the cinnamic acid (CA) drug. The organoclays (OC) were prepared by loading different amounts of the biocompatible nonionic polyoxyethylene sorbitan monolaurate surfactant (Tween20) onto K10 montmorillonite (Mt) clay and characterized through the construction of the adsorption isotherms by means of the spectrophotometric method. The performance of the prepared material was verified by gathering the adsorption isotherms of the cinnamic acid onto the Mt/Tween20 organoclay and by monitoring the release profiles in both simulated gastric (SGF) and intestinal fluids (SIF). The quantitative analysis of the adsorption isotherms revealed that the uptake of the aromatic component onto both the blank and Tween20-loaded Mt was governed by positive cooperative processes and that the presence of the bio-surfactant enhanced the loading efficiency of the clay. By relating the raw montmorillonite uptake capability with that of the OC it was assessed that the presence of the bio-surfactant enhanced about 2 times the loading efficiency of the clay. From the XRD characterization of the obtained complexes, the successful intercalation of the drug into the prepared organoclay was demonstrated. Very useful information was obtained by the in vitro release studies, which showed that the release of the drug from both the clay and organoclay was prolonged in comparison with the pharmacokinetics of the free drug. Besides, the intercalation of the surfactant into the nano-carrier ensured the complete release of the CA after oral drug administration and the kinetics of the release process was strongly dependent on the type of drug formulation used, which means that the CA release can be modulated by properly functionalizing the clay surface

    Peculiar Mechanism of Solubilization of a Sparingly Water Soluble Drug into Polymeric Micelles. Kinetic and Equilibrium Studies

    Get PDF
    Complementary kinetic and equilibrium studies on the solubilization process of the sparingly water soluble tamoxifen (TAM) drug in polymeric aqueous solutions have been performed by using the spectrophotometric method. In particular, the amphiphilic copolymers obtained by derivatization of polymeric chain of poly(N-2-hydroxyethyl)-DLaspartamide, PHEA, with poly(ethylene glycol)s, PEG (2000 or 5000 Da), and/or hexadecylamine chain, C16, namely PHEA-PEG2000-C16, PHEA-PEG5000-C16, PHEA-C16, have been employed. Preliminary to the kinetic and equilibrium data quantitative treatment, the molar absorption coefficient of TAM in polymeric micelle aqueous solution has been determined. By these studies the solubization sites of TAM into the polymeric micelles have been determined and the solubilization mechanism has been elucidated through a nonconventional approach by considering the TAM partitioned between three pseudophases, i.e., the aqueous pseudophase, the hydrophilic corona, and the hydrophobic core. The simultaneous solution of the rate laws associated with each step of the proposed mechanism allowed the calculation of the rate constants associated with the involved processes, the values of which are independent of both the copolymer concentration and nature, with the exception of the rate of the TAM transfer from the corona to the core. This has been attributed to the steric barrier, represented by the corona, which hampers the solubilization into the core. The binding constant values of the TAM to the hydrophilic corona of the polymeric micelles, calculated through the quantitative analysis of the equilibrium data, depend on the thickness of the hydrophilic headgroup, while those of the hydrophobic core are almost independent of the copolymer type. Further confirmation to the proposed solubilization mechanism has been provided by performing the kinetic and equilibrium measurements in the presence of PHEA-PEG2000 and PHEAPEG5000 copolymers

    Modified montmorillonite as drug delivery agent for enhancing antibiotic therapy

    Get PDF
    The appealing properties of surfactant‐intercalated Montmorillonites (Organo-montmorillonite, OMt) were successfully investigated to propose an effective drug delivery system for metronidazole (MNE) antibiotic therapy. This represents a serious pharmaceutical concern due to the adverse drug reactions and the low targeting ability of MNE. The non‐ionic surfactant Tween 20 was used to functionalize montmorillonite, thus accomplishing the two‐fold objective of enhancing the stability of clay dispersion and better controlling drug uptake and release. The adsorption process was performed under different experimental conditions and investigated by constructing the adsorption isotherms through high‐performance liquid chromatography (HPLC) measurements. Powder X‐ray diffraction (XRD) measurements were performed to characterize the MNE/OMt compounds. The gathered results revealed that the uptake of the drug occurs preferentially in the clay interlayer, and it is governed by positive cooperative processes. The presence of surfactant drives the adsorption into clay interlayer and hampers the adsorption onto external lamella faces. The good performances of the prepared OMt in the controlled release of the MNE were proved by investigating the release profiles under physiological conditions, simulating oral drug administration. Cytotoxicity measurements demonstrated the biocompatibility of the complexes and evidenced that, under specific experimental conditions, nanodevices are more biocompatible than a free drug
    • 

    corecore