9 research outputs found

    Immunoglobulin G; structure and functional implications of different subclass modifications in initiation and resolution of allergy.

    Get PDF
    IgE and not IgG is usually associated with allergy. IgE lodged on mast cells in skin or gut and basophils in the blood allows for the prolonged duration of allergy through the persistent expression of high affinity IgE receptors. However, many allergic reactions are not dependent on IgE and are generated in the absence of allergen specific and even total IgE. Instead, IgG plasma cells are involved in induction of, and for much of the pathogenesis of, allergic diseases. The pattern of IgG producing plasma cells in atopic children and the tendency for direct or further class switching to IgE are the principle factors responsible for long-lasting sensitization of mast cells in allergic children. Indirect class switching from IgG producing plasma cells has been shown to be the predominant pathway for production of IgE while a Th2 microenvironment, genetic predisposition, and the concentration and nature of allergens together act on IgG plasma cells in the atopic tendency to undergo further immunoglobulin gene recombination. The seminal involvement of IgG in allergy is further indicated by the principal role of IgG4 in the natural resolution of allergy and as the favourable immunological response to immunotherapy. This paper will look at allergy through the role of different antibodies than IgE and give current knowledge of the nature and role of IgG antibodies in the start, maintenance and resolution of allergy

    Mechanisms of interleukin-10-mediated immune suppression

    No full text
    Specific immune suppression and induction of anergy are essential processes in the regulation and circumvention of immune defence. Interleukin-10 (IL-10), a suppressor cytokine of T-cell proliferative and cytokine responses, plays a key regulatory role in tolerizing exogenous antigens during specific immunotherapy (SIT) of allergy and natural exposure to antigens. Specific T-cell tolerance is directed against the T-cell epitopes of an antigen and characterized by suppressed proliferative and T helper type 1 (Th1) and type 2 (Th2) cytokine responses. IL-10 elicits tolerance in T cells by selective inhibition of the CD28 co-stimulatory pathway and thereby controls suppression and development of antigen-specific immunity. IL-10 only inhibits T cells stimulated by low numbers of triggered T-cell receptors and which therefore depend on CD28 co-stimulation. T cells receiving a strong signal from the T-cell receptor alone, and thus not requiring CD28 co-stimulation, are not affected by IL-10. IL-10 inhibits CD28 tyrosine phosphorylation, the initial step of the CD28 signalling pathway, and consequently the phosphatidylinositol 3-kinase p85 binding to CD28. Together these results demonstrate that IL-10-induced selective inhibition of the CD28 co-stimulatory pathway acts as a decisive mechanism in determining whether a T cell will contribute to an immune response or become anergic

    Therapeutic manipulation of immune tolerance in allergic disease

    Full text link
    Immune tolerance - the adaptation of the immune system to external antigens or allergens - might be therapeutically manipulated to restore normal immunity in conditions such as allergy, asthma and autoimmune diseases. The field of allergen-specific immunotherapy is experiencing exciting and novel developments for the treatment of allergic and autoimmune diseases, and recent insights into the reciprocal regulation and counter-balance between different T-cell subsets is foreseen to facilitate new strategies for immunointervention. This Review highlights current knowledge of immunomodulatory therapies for the manipulation of immune tolerance and highlights recent approaches to improve allergen-specific immunotherapy for the treatment of allergic diseases
    corecore