103 research outputs found

    Diquark Bose-Einstein condensation

    Full text link
    Bose-Einstein condensation (BEC) of composite diquarks in quark matter (the color superconductor phase) is discussed using the quasi-chemical equilibrium theory at a relatively low density region near the deconfinement phase transition, where dynamical quark-pair fluctuations are assumed to be described as bosonic degrees of freedom (diquarks). A general formulation is given for the diquark formation and particle-antiparticle pair-creation processes in the relativistic flamework, and some interesting properties are shown, which are characteristic for the relativistic many-body system. Behaviors of transition temperature and phase diagram of the quark-diquark matter are generally presented in model parameter space, and their asymptotic behaviors are also discussed. As an application to the color superconductivity, the transition temperatures and the quark and diquark density profiles are calculated in case with constituent/current quarks, where the diquark is in bound/resonant state. We obtained TC6080T_C \sim 60-80 MeV for constituent quarks and TC130T_C \sim 130 MeV for current quarks at a moderate density (ρb3ρ0\rho_b \sim 3 \rho_0). The method is also developed to include interdiquark interactions into the quasi-chemical equilibrium theory within a mean-field approximation, and it is found that a possible repulsive diquark-diquark interaction lowers the transition temperature by nearly 50%.Comment: 21 pages, 23 figure

    Molecular formations in ultracold mixtures of interacting and noninteracting atomic gases

    Full text link
    Atom-molecule equilibrium for molecular formation processes is discussed for boson-fermion, fermion-fermion, and boson-boson mixtures of ultracold atomic gases in the framework of quasichemical equilibrium theory. After presentation of the general formulation, zero-temperature phase diagrams of the atom-molecule equilibrium states are calculated analytically; molecular, mixed, and dissociated phases are shown to appear for the change of the binding energy of the molecules. The temperature dependences of the atom or molecule densities are calculated numerically, and finite-temperature phase structures are obtained of the atom-molecule equilibrium in the mixtures. The transition temperatures of the atom or molecule Bose-Einstein condensations are also evaluated from these results. Quantum-statistical deviations of the law of mass action in atom-molecule equilibrium, which should be satisfied in mixtures of classical Maxwell-Boltzmann gases, are calculated, and the difference in the different types of quantum-statistical effects is clarified. Mean-field calculations with interparticle interactions (atom-atom, atom-molecule, and molecule-molecule) are formulated, where interaction effects are found to give the linear density-dependent term in the effective molecular binding energies. This method is applied to calculations of zero-temperature phase diagrams, where new phases with coexisting local-equilibrium states are shown to appear in the case of strongly repulsive interactions.Comment: 35 pages, 14 figure

    Magnetic Properties of a Bose-Einstein Condensate

    Full text link
    Three hyperfine states of Bose-condensed sodium atoms, recently optically trapped, can be described as a spin-1 Bose gas. We study the behaviour of this system in a magnetic field, and construct the phase diagram, where the temperature of the Bose condensation TBECT_{BEC} increases with magnetic field. In particular the system is ferromagnetic below TBECT_{BEC} and the magnetization is proportional to the condensate fraction in a vanishing magnetic field. Second derivatives of the magnetisation with regard to temperature or magnetic field are discontinuous along the phase boundary.Comment: 5 pages, 5 figures included, to appear in Phys. Rev.

    Bose-Einstein condensation of atomic gases in a harmonic oscillator confining potential trap

    Full text link
    We present a model which predicts the temperature of Bose-Einstein condensation in atomic alkali gases and find excellent agreement with recent experimental observations. A system of bosons confined by a harmonic oscillator potential is not characterized by a critical temperature in the same way as an identical system which is not confined. We discuss the problem of Bose-Einstein condensation in an isotropic harmonic oscillator potential analytically and numerically for a range of parameters of relevance to the study of low temperature gases of alkali metals.Comment: 11 pages latex with two postscript figure

    Pseudoinfarction pattern in a patient with hyperkalemia, diabetic ketoacidosis and normal coronary vessels: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>A rare electrocardiographic finding of hyperkalemia is ST segment elevation or the so called 'pseudoinfarction' pattern. It has been suggested that hyperkalemia causes the 'pseudoinfarction' pattern not only through its direct myocardial effects, but also through other mechanisms, such as anoxia, acidosis, and coronary artery spasm.</p> <p>Case presentation</p> <p>A 33-year-old Caucasian woman with insulin-treated diabetes presented with continuous epigastric pain of four hours duration. Her coronary heart disease risk factors apart from diabetes included hypercholesterolemia and smoking. Her initial electrocardiogram revealed ST segment elevation in the anteroseptal leads consistent with anterior myocardial infarction. Blood tests revealed hyperglycemia, hyperkalemia, metabolic acidosis and urine ketones, while a bed-side cardiac echocardiogram showed no segmental wall motion abnormality. We provisionally diagnosed diabetic ketoacidosis that was possibly precipitated by acute myocardial infarction, as there were findings in favor of (epigastric pain, electrocardiogram pattern, presence of 3 coronary heart disease risk factors) and against (young age, normal echocardiogram) the diagnosis of acute myocardial infarction. We performed cardiac angiography in order to exclude an anterior acute myocardial infarction, which could lead to myocardial damage and possible severe complications should there be a delay in treatment. Angiography revealed normal coronary arteries. During the procedure, ST segment elevation in the anteroseptal leads was still present in our patient's electrocardiogram results.</p> <p>Conclusion</p> <p>ST segment elevation is a rare manifestation of hyperkalemia. In our patient, coronary spasm did not contribute to such an electrocardiography finding.</p

    Magnetic Field Effects in the Pseudogap Phase: A Competing Energy Gap Scenario for Precursor Superconductivity

    Full text link
    We study the sensitivity of T_c and T^* to low fields, H, within the pseudogap state using a BCS-based approach extended to arbitrary coupling. We find that T^* and T_c, which are of the same superconducting origin, have very different H dependences. This is due to the pseudogap, \Delta_{pg}, which is present at the latter, but not former temperature. Our results for the coherence length \xi fit well with existing experiments.We predict that very near the insulator \xi will rapidly increase.Comment: 4 pages, 4 figures, RevTe

    Ground-State of Charged Bosons Confined in a Harmonic Trap

    Full text link
    We study a system composed of N identical charged bosons confined in a harmonic trap. Upper and lower energy bounds are given. It is shown in the large N limit that the ground-state energy is determined within an accuracy of ±8\pm 8% and that the mean field theory provides a reasonable result with relative error of less than 16% for the binding energy .Comment: 15 page

    Quasicondensate and superfluid fraction in the 2D charged-boson gas at finite temperature

    Full text link
    The Bogoliubov - de Gennes equations are solved for the Coulomb Bose gas describing a fluid of charged bosons at finite temperature. The approach is applicable in the weak coupling regime and the extent of its quantitative usefulness is tested in the three-dimensional fluid, for which diffusion Monte Carlo data are available on the condensate fraction at zero temperature. The one-body density matrix is then evaluated by the same approach for the two-dimensional fluid with e^2/r interactions, to demonstrate the presence of a quasi-condensate from its power-law decay with increasing distance and to evaluate the superfluid fraction as a function of temperature at weak coupling.Comment: 9 pages, 2 figure

    Bose-Einstein condensation as symmetry breaking in compact curved spacetimes

    Get PDF
    We examine Bose-Einstein condensation as a form of symmetry breaking in the specific model of the Einstein static universe. We show that symmetry breaking never occursin the sense that the chemical potential μ\mu never reaches its critical value.This leads us to some statements about spaces of finite volume in general. In an appendix we clarify the relationship between the standard statistical mechanical approaches and the field theory method using zeta functions.Comment: Revtex, 25 pages, 3 figures, uses EPSF.sty. To be published in Phys. Rev.
    corecore