684 research outputs found

    Experimental evidence of shock mitigation in a Hertzian tapered chain

    Full text link
    We present an experimental study of the mechanical impulse propagation through a horizontal alignment of elastic spheres of progressively decreasing diameter ϕn\phi_n, namely a tapered chain. Experimentally, the diameters of spheres which interact via the Hertz potential are selected to keep as close as possible to an exponential decrease, ϕn+1=(1q)ϕn\phi_{n+1}=(1-q)\phi_n, where the experimental tapering factor is either q15.60q_1\simeq5.60~% or q28.27q_2\simeq8.27~%. In agreement with recent numerical results, an impulse initiated in a monodisperse chain (a chain of identical beads) propagates without shape changes, and progressively transfer its energy and momentum to a propagating tail when it further travels in a tapered chain. As a result, the front pulse of this wave decreases in amplitude and accelerates. Both effects are satisfactorily described by the hard spheres approximation, and basically, the shock mitigation is due to partial transmissions, from one bead to the next, of momentum and energy of the front pulse. In addition when small dissipation is included, a better agreement with experiments is found. A close analysis of the loading part of the experimental pulses demonstrates that the front wave adopts itself a self similar solution as it propagates in the tapered chain. Finally, our results corroborate the capability of these chains to thermalize propagating impulses and thereby act as shock absorbing devices.Comment: ReVTeX, 7 pages with 6 eps, accepted for Phys. Rev. E (Related papers on http://www.supmeca.fr/perso/jobs/

    Analytic invariant charge and the lattice static quark-antiquark potential

    Full text link
    A recently developed model for the QCD analytic invariant charge is compared with quenched lattice simulation data on the static quark-antiquark potential. By employing this strong running coupling one is able to obtain the confining quark-antiquark potential in the framework of the one-gluon exchange model. To achieve this objective a technique for evaluating the integrals of a required form is developed. Special attention is paid here to removing the divergences encountered the calculations. All this enables one to examine the asymptotic behavior of the potential at both small and large distances with high accuracy. An explicit expression for the quark-antiquark potential, which interpolates between these asymptotics, and satisfies the concavity condition, is proposed. The derived potential coincides with the perturbative results at small distances, and it is in a good agreement with the lattice data in the nonperturbative physically-relevant region. An estimation of the parameter ΛQCD\Lambda_{QCD} is obtained for the case of pure gluodynamics. It is found to be consistent with all the previous estimations of ΛQCD\Lambda_{QCD} in the framework of approach in hand.Comment: LaTeX2e, 10 pages with 3 EPS figure

    Observation of two-wave structure in strongly nonlinear dissipative granular chains

    Full text link
    In a strongly nonlinear viscous granular chain under conditions of loading that exclude stationary waves (e.g., impact by a single grain) we observe a pulse that consists of two interconnected but distinct parts. One is a leading narrow "primary pulse" with properties similar to a solitary wave in a "sonic vacuum." It arises from strong nonlinearity and discreteness in the absence of dissipation, but now decays due to viscosity. The other is a broad, much more persistent shock-like "secondary pulse" trailing the primary pulse and caused by viscous dissipation. The medium behind the primary pulse is transformed from a "sonic vacuum" to a medium with finite sound speed. When the rapidly decaying primary pulse dies, the secondary pulse continues to propagate in the "sonic vacuum," with an oscillatory front if the viscosity is relatively small, until its eventual (but very slow) disintegration. Beyond a critical viscosity there is no separation of the two pulses, and the dissipation and nonlinearity dominate the shock-like attenuating pulse which now exhibits a nonoscillatory front

    Tunability of solitary wave properties in one dimensional strongly nonlinear phononic crystals

    Get PDF
    One dimentional strongly nonlinear phononic crystals were assembled from chains of PTFE (polytetrafluoroethylene) and stainless steel spheres with gauges installed inside the beads. Trains of strongly nonlinear solitary waves were excited by an impact. A significant modification of the signal shape and an increase of solitary wave speed up to two times (at the same amplitude of dynamic contact force)were achieved through a noncontact magnetically induced precompression of the chains. Data for PTFE based chains are presented for the first time and data for stainless steel based chains were extended into a smaller range of amplitudes by more than one order of magnitude than previously reported. Experimental results were found to be in reasonable agreement with the long wave approximation and with numerical calculations based on Hertz interaction law for discrete chains.Comment: 36 pages, 7 figure

    Is it possible to assign physical meaning to field theory with higher derivatives?

    Full text link
    To overcome the difficulties with the energy indefiniteness in field theories with higher derivatives, it is supposed to use the mechanical analogy, the Timoshenko theory of the transverse flexural vibrations of beams or rods well known in mechanical engineering. It enables one to introduce the notion of a "mechanical" energy in such field models that is wittingly positive definite. This approach can be applied at least to the higher derivative models which effectively describe the extended localized solutions in usual first order field theories (vortex solutions in Higgs models and so on). Any problems with a negative norm ghost states and unitarity violation do not arise here.Comment: 16 pp, LaTeX, JINR E2-93-19

    Self-Consistent Separable Rpa Approach for Skyrme Forces: Axial Nuclei

    Get PDF
    The self-consistent separable RPA (random phase approximation) method is formulated for Skyrme forces with pairing. The method is based on a general self-consistent procedure for factorization of the two-body interaction. It is relevant for various density- and current-dependent functionals. The contributions of the time-even and time-odd Skyrme terms as well as of the Coulomb and pairing terms to the residual interaction are taken self-consistently into account. Most of the expression have a transparent analytical form, which makes the method convenient for the treatment and analysis. The separable character of the residual interaction allows to avoid diagonalization of high-rank RPA matrices and thus to minimize the calculation effort. The previous studies have demonstrated high numerical accuracy and efficiency of the method for spherical nuclei. In this contribution, the method is specified for axial nuclei. We provide systematic and detailed presentation of formalism and discuss different aspects of the model.Comment: 42 page

    Dimension dependent energy thresholds for discrete breathers

    Full text link
    Discrete breathers are time-periodic, spatially localized solutions of the equations of motion for a system of classical degrees of freedom interacting on a lattice. We study the existence of energy thresholds for discrete breathers, i.e., the question whether, in a certain system, discrete breathers of arbitrarily low energy exist, or a threshold has to be overcome in order to excite a discrete breather. Breather energies are found to have a positive lower bound if the lattice dimension d is greater than or equal to a certain critical value d_c, whereas no energy threshold is observed for d<d_c. The critical dimension d_c is system dependent and can be computed explicitly, taking on values between zero and infinity. Three classes of Hamiltonian systems are distinguished, being characterized by different mechanisms effecting the existence (or non-existence) of an energy threshold.Comment: 20 pages, 5 figure

    STIRAP transport of Bose-Einstein condensate in triple-well trap

    Full text link
    The irreversible transport of multi-component Bose-Einstein condensate (BEC) is investigated within the Stimulated Adiabatic Raman Passage (STIRAP) scheme. A general formalism for a single BEC in M-well trap is derived and analogy between multi-photon and tunneling processes is demonstrated. STIRAP transport of BEC in a cyclic triple-well trap is explored for various values of detuning and interaction between BEC atoms. It is shown that STIRAP provides a complete population transfer at zero detuning and interaction and persists at their modest values. The detuning is found not to be obligatory. The possibility of non-adiabatic transport with intuitive order of couplings is demonstrated. Evolution of the condensate phases and generation of dynamical and geometric phases are inspected. It is shown that STIRAP allows to generate the unconventional geometrical phase which is now of a keen interest in quantum computing.Comment: 9 pages, 6 figures. To be published in Laser Physics (v. 19, n.4, 2009

    Extended analytic QCD model with perturbative QCD behavior at high momenta

    Full text link
    In contrast to perturbative QCD, the analytic QCD models have running coupling whose analytic properties correctly mirror those of spacelike observables. The discontinuity (spectral) function of such running coupling is expected to agree with the perturbative case at large timelike momenta; however, at low timelike momenta it is not known. In the latter regime, we parametrize the unknown behavior of the spectral function as a sum of (two) delta functions; while the onset of the perturbative behavior of the spectral function is set to be 1.0-1.5 GeV. This is in close analogy with the "minimal hadronic ansatz" used in the literature for modeling spectral functions of correlators. For the running coupling itself, we impose the condition that it basically merges with the perturbative coupling at high spacelike momenta. In addition, we require that the well-measured nonstrange semihadronic (V+A) tau decay ratio value be reproduced by the model. We thus obtain a QCD framework which is basically indistinguishable from perturbative QCD at high momenta (Q > 1 GeV), and at low momenta it respects the basic analyticity properties of spacelike observables as dictated by the general principles of the local quantum field theories.Comment: 15 pages, 6 figures; in v2 Sec.IV is extended after Eq.(48) and refs.[51-52] added; v2 published in Phys.Rev.D85,114043(2012
    corecore