72 research outputs found
Dose Dependent Effects on Cell Cycle Checkpoints and DNA Repair by Bendamustine
Bendamustine (BDM) is an active chemotherapeutic agent approved in the U. S. for treating chronic lymphocytic leukemia and non-Hodgkin lymphoma. Its chemical structure suggests it may have alkylator and anti-metabolite activities; however the precise mechanism of action is not well understood. Here we report the concentration-dependent effects of BDM on cell cycle, DNA damage, checkpoint response and cell death in HeLa cells. Low concentrations of BDM transiently arrested cells in G2, while a 4-fold higher concentration arrested cells in S phase. DNA damage at 50, but not 200 µM, was efficiently repaired after 48 h treatment, suggesting a difference in DNA repair efficiency at the two concentrations. Indeed, perturbing base-excision repair sensitized cells to lower concentrations of BDM. Timelapse studies of the checkpoint response to BDM showed that inhibiting Chk1 caused both the S- and G2-arrested cells to prematurely enter mitosis. However, whereas the cells arrested in G2 (low dose BDM) entered mitosis, segregated their chromosomes and divided normally, the S-phase arrested cells (high dose BDM) exhibited a highly aberrant mitosis, whereby EM images showed highly fragmented chromosomes. The vast majority of these cells died without ever exiting mitosis. Inhibiting the Chk1-dependent DNA damage checkpoint accelerated the time of killing by BDM. Our studies suggest that BDM may affect different biological processes depending on drug concentration. Sensitizing cells to killing by BDM can be achieved by inhibiting base-excision repair or disrupting the DNA damage checkpoint pathway
The Recognition of N-Glycans by the Lectin ArtinM Mediates Cell Death of a Human Myeloid Leukemia Cell Line
ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus (jackfruit), interacts with N-glycosylated receptors on the surface of several cells of hematopoietic origin, triggering cell migration, degranulation, and cytokine release. Because malignant transformation is often associated with altered expression of cell surface glycans, we evaluated the interaction of ArtinM with human myelocytic leukemia cells and investigated cellular responses to lectin binding. The intensity of ArtinM binding varied across 3 leukemia cell lines: NB4>K562>U937. The binding, which was directly related to cell growth suppression, was inhibited in the presence of Manα1-3(Manα1-6)Manβ1, and was reverted in underglycosylated NB4 cells. ArtinM interaction with NB4 cells induced cell death (IC50 = 10 µg/mL), as indicated by cell surface exposure of phosphatidylserine and disruption of mitochondrial membrane potential unassociated with caspase activation or DNA fragmentation. Moreover, ArtinM treatment of NB4 cells strongly induced reactive oxygen species generation and autophagy, as indicated by the detection of acidic vesicular organelles in the treated cells. NB4 cell death was attributed to ArtinM recognition of the trimannosyl core of N-glycans containing a ß1,6-GlcNAc branch linked to α1,6-mannose. This modification correlated with higher levels of N-acetylglucosaminyltransferase V transcripts in NB4 cells than in K562 or U937 cells. Our results provide new insights into the potential of N-glycans containing a β1,6-GlcNAc branch linked to α1,6-mannose as a novel target for anti-leukemia treatment
In-situ study of the cracking of metal hydride electrodes by acoustic emission technique.
International audienc
Synthesis of boron-doped Si particles by ball milling and application in Li-ion batteries
International audienceBoron-doped Si particles were prepared by high-energy ball-milling of pure B and Si in various proportions (0, 10^2^0, 10^2^1, 10^2^2 and 10^2^3 atoms B per mole Si). Despite the fact that only a fraction of the added B atoms were incorporated into the Si lattice, a significant decrease of the Si electrical resistivity was observed, leading to a minimum electrical resistivity of 0.13Ωcm for the sample milled with 10^2^1 atoms B per mole Si compared to 190Ωcm for the boron-free sample. Electrochemical investigations focused on these two samples showed that the B-doping of Si does not improve significantly the performance of the composite Si-based electrode for Li-ion batteries in terms of cycle life, coulombic efficiency and high-rate chargeability. Through an analysis of anodic polarization curves, it was also shown that the delithiation reaction is mainly controlled by the Li-diffusion kinetics from a rate of ~4C on both electrodes. Lastly, it was shown that the use of a resonant acoustic mixer for the mixing of the (Si+carbon black+carboxymethyl cellulose) components increases the cycle life of the composite electrode
Regeneration of Fertile Barley Plants from Mechanically Isolated Protoplasts of the Fertilized Egg Cell.
A simple procedure is described for the mechanical isolation of protoplasts of unfertilized and fertilized barley egg cells from dissected ovules. Viable protoplasts were isolated from ~75% of the dissected ovules. Unfertilized protoplasts did not divide, whereas almost all fertilized protoplasts developed into microcalli. These degenerated when grown in medium only. When cocultivated with barley microspores undergoing microspore embryogenesis, the protoplasts of the fertilized egg cells developed into embryo-like structures that gave rise to fully fertile plants. On average, 75% of cocultivated protoplasts of fertilized egg cells developed into embryo-like structures. Fully fertile plants were regenerated from ~50% of the embryo-like structures. The isolation-regeneration techniques may be largely genotype independent, because similar frequencies were obtained in two different barley varieties with very different performance in anther and microspore culture. Protoplasts of unfertilized and fertilized eggs of wheat were isolated by the same procedure, and a fully fertile wheat plant was regenerated by cocultivation with barley microspores
- …