129 research outputs found
Observing quantum state diffusion by heterodyne detection of fluorescence
A qubit can relax by fluorescence, which prompts the release of a photon into
its electromagnetic environment. By counting the emitted photons, discrete
quantum jumps of the qubit state can be observed. The succession of states
occupied by the qubit in a single experiment, its quantum trajectory, depends
in fact on the kind of detector. How are the quantum trajectories modified if
one measures continuously the amplitude of the fluorescence field instead?
Using a superconducting parametric amplifier, we have performed heterodyne
detection of the fluorescence of a superconducting qubit. For each realization
of the measurement record, we can reconstruct a different quantum trajectory
for the qubit. The observed evolution obeys quantum state diffusion, which is
characteristic of quantum measurements subject to zero point fluctuations.
Independent projective measurements of the qubit at various times provide a
quantitative validation of the reconstructed trajectories. By exploring the
statistics of quantum trajectories, we demonstrate that the qubit states span a
deterministic surface in the Bloch sphere at each time in the evolution.
Additionally, we show that when monitoring fluorescence, coherent
superpositions are generated during the decay from excited to ground state.
Counterintuitively, measuring light emitted during relaxation can give rise to
trajectories with increased excitation probability.Comment: Supplementary material can be found in the ancillary sectio
Control of friction forces with stationary wave piezoelectric actuator
"In the field of the research on piezoelectric motors, the control of friction forces by ultrasonic waves was studied mainly from an experimental point of view [1]. The principle of friction force reduction by imposed mechanical vibrations in unlubricated contacts was recently studied in order to reduce the friction losses in an internal combustion engine with Langevin type actuators [2]. This article deals with the advantages of flexural stationary wave piezoelectric actuators in the control of the friction forces thanks to their high pressures generated at high frequencies (>10 Khz). The use of specific contact geometry which is defined by the Hertz theory associated with partial slip contact conditions, allows optimizing the lubrication effect. In the case of piezoelectric torque limiter application, the design and the numerical simulation of dedicated piezoelectric actuator are compared. In agreement with the contact modeling, the characterization of the complete actuator on mechanical test bench validates the ""torque limiter"" function and the optimization of lubrication principle with dedicated contact geometry
Using Spontaneous Emission of a Qubit as a Resource for Feedback Control
Persistent control of a transmon qubit is performed by a feedback protocol
based on continuous heterodyne measurement of its fluorescence. By driving the
qubit and cavity with microwave signals whose amplitudes depend linearly on the
instantaneous values of the quadratures of the measured fluorescence field, we
show that it is possible to stabilize permanently the qubit in any targeted
state. Using a Josephson mixer as a phase-preserving amplifier, it was possible
to reach a total measurement efficiency =35%, leading to a maximum of 59%
of excitation and 44% of coherence for the stabilized states. The experiment
demonstrates multiple-input multiple-output analog Markovian feedback in the
quantum regime.Comment: Supplementary material can be found as an ancillary objec
Controllability of spin-boson systems
In this paper we study the so-called spin-boson system, namely {a two-level
system} in interaction with a distinguished mode of a quantized bosonic field.
We give a brief description of the controlled Rabi and Jaynes--Cummings models
and we discuss their appearance in the mathematics and physics literature. We
then study the controllability of the Rabi model when the control is an
external field acting on the bosonic part. Applying geometric control
techniques to the Galerkin approximation and using perturbation theory to
guarantee non-resonance of the spectrum of the drift operator, we prove
approximate controllability of the system, for almost every value of the
interaction parameter
Control of friction forces with stationary wave piezoelectric actuator
"In the field of the research on piezoelectric motors, the control of friction forces by ultrasonic waves was studied mainly from an experimental point of view [1]. The principle of friction force reduction by imposed mechanical vibrations in unlubricated contacts was recently studied in order to reduce the friction losses in an internal combustion engine with Langevin type actuators [2]. This article deals with the advantages of flexural stationary wave piezoelectric actuators in the control of the friction forces thanks to their high pressures generated at high frequencies (>10 Khz). The use of specific contact geometry which is defined by the Hertz theory associated with partial slip contact conditions, allows optimizing the lubrication effect. In the case of piezoelectric torque limiter application, the design and the numerical simulation of dedicated piezoelectric actuator are compared. In agreement with the contact modeling, the characterization of the complete actuator on mechanical test bench validates the ""torque limiter"" function and the optimization of lubrication principle with dedicated contact geometry
Adiabatic passage and ensemble control of quantum systems
This paper considers population transfer between eigenstates of a finite
quantum ladder controlled by a classical electric field. Using an appropriate
change of variables, we show that this setting can be set in the framework of
adiabatic passage, which is known to facilitate ensemble control of quantum
systems. Building on this insight, we present a mathematical proof of
robustness for a control protocol -- chirped pulse -- practiced by
experimentalists to drive an ensemble of quantum systems from the ground state
to the most excited state. We then propose new adiabatic control protocols
using a single chirped and amplitude shaped pulse, to robustly perform any
permutation of eigenstate populations, on an ensemble of systems with badly
known coupling strengths. Such adiabatic control protocols are illustrated by
simulations achieving all 24 permutations for a 4-level ladder
Accurate strain measurements in highly strained Ge microbridges
Ge under high strain is predicted to become a direct bandgap semiconductor.
Very large deformations can be introduced using microbridge devices. However,
at the microscale, strain values are commonly deduced from Raman spectroscopy
using empirical linear models only established up to 1.2% for uniaxial stress.
In this work, we calibrate the Raman-strain relation at higher strain using
synchrotron based microdiffraction. The Ge microbridges show unprecedented high
tensile strain up to 4.9 % corresponding to an unexpected 9.9 cm-1 Raman shift.
We demonstrate experimentally and theoretically that the Raman strain relation
is not linear and we provide a more accurate expression.Comment: 10 pages, 4 figure
One hundred second bit-flip time in a two-photon dissipative oscillator
Current implementations of quantum bits (qubits) continue to undergo too many
errors to be scaled into useful quantum machines. An emerging strategy is to
encode quantum information in the two meta-stable pointer states of an
oscillator exchanging pairs of photons with its environment, a mechanism shown
to provide stability without inducing decoherence. Adding photons in these
states increases their separation, and macroscopic bit-flip times are expected
even for a handful of photons, a range suitable to implement a qubit. However,
previous experimental realizations have saturated in the millisecond range. In
this work, we aim for the maximum bit-flip time we could achieve in a
two-photon dissipative oscillator. To this end, we design a Josephson circuit
in a regime that circumvents all suspected dynamical instabilities, and employ
a minimally invasive fluorescence detection tool, at the cost of a two-photon
exchange rate dominated by single-photon loss. We attain bit-flip times of the
order of 100 seconds for states pinned by two-photon dissipation and containing
about 40 photons. This experiment lays a solid foundation from which the
two-photon exchange rate can be gradually increased, thus gaining access to the
preparation and measurement of quantum superposition states, and pursuing the
route towards a logical qubit with built-in bit-flip protection
Normal forms and internal regularization of nonlinear differential-algebraic control systems
In this article, we propose two normal forms for nonlinear differential-algebraic control systems (DACSs) under external feedback equivalence, using a notion called maximal controlled invariant submanifold. The two normal forms simplify the system structures and facilitate understanding the various roles of variables for nonlinear DACSs. Moreover, we study when a given nonlinear DACS is internally regularizable, that is, when there exists a state feedback transforming the DACS into a differential-algebraic equation (DAE) with internal regularity, the latter notion is closely related to the existence and uniqueness of solutions of DAEs. We also revise a commonly used method in DAE solution theory, called the geometric reduction method. We apply this method to DACSs and formulate it as an algorithm, which is used to construct maximal controlled invariant submanifolds and to find internal regularization feedbacks. Two examples of mechanical systems are used to illustrate the proposed normal forms and to show how to internally regularize DACSs
- …