438 research outputs found

    Observations of spatial and velocity structure in the Orion Molecular Cloud

    Full text link
    Observations are reported of H2 IR emission in the S(1) v=1-0 line at 2.121 microns in the Orion Molecular Cloud, OMC1, using the GriF instrument on the Canada-France-Hawaii Telescope. GriF is a combination of adaptive optics and Fabry-Perot interferometry, yielding a spatial resolution of 0.15" to 0.18" and a velocity discrimination as high as 1 km/s. Thanks to the high spatial and velocity resolution of the GriF data, 193 bright H2 emission regions can be identified in OMC1. The general characteristics of these features are described in terms of radial velocities, brightness and spatial displacement of maxima of velocity and brightness, the latter to yield the orientation of flows in the plane of the sky. Strong spatial correlation between velocity and bright H2 emission is found and serves to identify many features as shocks. Important results are: (i) velocities of the excited gas illustrate the presence of a zone to the south of BN-IRc2 and Peak 1, and the west of Peak 2, where there is a powerful blue-shifted outflow with an average velocity of -18 km/s. This is shown to be the NIR counterpart of an outflow identified in the radio from source I, a very young O-star. (ii) There is a band of weak velocity features (<5 km/s) in Peak 1 which may share a common origin through an explosive event, in the BN-IRc2 region, with the fast-moving fingers (or bullets) to the NW of OMC1. (iii) A proportion of the flows are likely to represent sites of low mass star formation and several regions show multiple outflows, probably indicative of multiple star formation within OMC1. The high spatial and velocity resolution of the GriF data show these and other features in more detail than has previously been possible.Comment: 27 pages, 19 figures, submitted to A&A Version 2: Several additions, including a section on protostellar candidates in OMC1, have been made based on the referee's suggestions v3: corrected typograph

    Morphological evolution of z~1 galaxies from deep K-band AO imaging in the COSMOS deep field

    Get PDF
    We present the results of an imaging programme of distant galaxies (z~0.8) at high spatial resolution (~0.1").We observed 7 fields of 1'*1' with the NACO Adaptive Optics system (VLT) in Ks (2.16um) band with typical V ~ 14 guide stars and 3h integration time per field. Observed fields are selected within the COSMOS survey area. High angular resolution K-band data have the advantage to probe old stellar populations in the rest-frame, enabling to determine galaxy morphological types unaffected by recent star formation, better linked to the underlying mass than classical optical morphology studies (HST). Adaptive optics on ground based telescopes is the only method today to obtain such high resolution in the K-band. In this paper we show that reliable results can be obtained and establish a first basis for larger observing programmes. We analyze the morphologies by means of B/D (Bulge/Disk) decomposition with GIM2D and CAS (Concentration-Asymmetry) estimators for 79 galaxies with magnitudes between Ks = 17-23 and classify them in three main morphological types (Late Type, Early Type and Irregulars). We obtain for the first time an estimate of the distribution of galaxy types at redshift z ~ 1 as measured from the near infrared at high spatial resolution. We show that galactic parameters (disk scale length, bulge effective radius and bulge fraction) can be estimated with a random error lower than 20% for the bulge fraction up to Ks = 19 (AB = 21) and that classification into the three main morphological types can be done up to Ks = 20 (AB = 22) with at least 70% of correct identifications. We used the known photometric redshifts to obtain a redshift distribution over 2 redshift bins (z < 0.8, 0.8 < z < 1.5) for each morphological type.Comment: 19 pages, 19 figures, 5 tables, Accepted for publication in A&A, typos corrected, referee's suggestions added, figure 3 has been strongly degrade

    A probable giant planet imaged in the Beta Pictoris disk

    Full text link
    Since the discovery of its dusty disk in 1984, Beta Pictoris has become the prototype of young early-type planetary systems, and there are now various indications that a massive Jovian planet is orbiting the star at ~ 10 AU. However, no planets have been detected around this star so far. Our goal was to investigate the close environment of Beta Pic, searching for planetary companion(s). Deep adaptive-optics L'-band images of Beta Pic were recorded using the NaCo instrument at the Very Large Telescope. A faint point-like signal is detected at a projected distance of ~ 8 AU from the star, within the North-East side of the dust disk. Various tests were made to rule out with a good confidence level possible instrumental or atmospheric artifacts. The probability of a foreground or background contaminant is extremely low, based in addition on the analysis of previous deep Hubble Space Telescope images. The object L'=11.2 apparent magnitude would indicate a typical temperature of ~1500 K and a mass of ~ 8 Jovian masses. If confirmed, it could explain the main morphological and dynamical peculiarities of the Beta Pic system. The present detection is unique among A-stars by the proximity of the resolved planet to its parent star. Its closeness and location inside the Beta Pic disk suggest a formation process by core accretion or disk instabilities rather than a binary-like formation process.Comment: 5 pages, 3 figures, 1 table. A&A Letters, in pres

    A method for detection of structure

    Full text link
    Context. In order to understand the evolution of molecular clouds it is important to identify the departures from self-similarity associated with the scales of self-gravity and the driving of turbulence. Aims. A method is described based on structure functions for determining whether a region of gas, such as a molecular cloud, is fractal or contains structure with characteristic scale sizes. Methods. Using artificial data containing structure it is shown that derivatives of higher order structure functions provide a powerful way to detect the presence of characteristic scales should any be present and to estimate the size of such structures. The method is applied to observations of hot H2 in the Kleinman-Low nebula, north of the Trapezium stars in the Orion Molecular Cloud, including both brightness and velocity data. The method is compared with other techniques such as Fourier transform and histogram techniques. Results. It is found that the density structure, represented by H2 emission brightness in the K-band (2-2.5micron), exhibits mean characteristic sizes of 110, 550, 1700 and 2700AU. The velocity data show the presence of structure at 140, 1500 and 3500AU. Compared with other techniques such as Fourier transform or histogram, the method appears both more sensitive to characteristic scales and easier to interpret.Comment: Astronomy and Astrophysics, in pres

    On-sky observations with an achromatic hybrid phase knife coronagraph in the visible

    Get PDF
    CONTEXT: The four-quadrant phase mask stellar coronagraph, introduced by D. Rouan et al., is capable of achieving very high dynamical range imaging and was studied in the context of the direct detection of extra-solar planets. Achromatic four-quadrant phase mask is currently being developed for broadband IR applications. AIMS: We report on laboratory and on-sky tests of a prototype coronagraph in the visible. This prototype, the achromatic hybrid phase knife coronagraph, was derived from the four-quadrant phase mask principle. METHODS: The instrumental setup implementing the coronagraph itself was designed to record the pre- and post-coronagraphic images simultaneously so that an efficient real-time image selection procedure can be performed. We describe the coronagraph and the associated tools that enable robust and repeatable observations. We present an algorithm of image selection that has been tested against the real on-sky data of the binary star HD80081 (* 38 Lyn). RESULTS Although the observing conditions were poor, the efficiency of the proposed method is proven. From this experiment, we derive procedures that can apply to future focal instruments associating adaptive optics and coronagraphy, targeting high dynamic range imaging in astronomy, such as detecting extra-solar planets

    A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images. I Method description

    Full text link
    We present a new non-parametric method to quantify morphologies of galaxies based on a particular family of learning machines called support vector machines. The method, that can be seen as a generalization of the classical CAS classification but with an unlimited number of dimensions and non-linear boundaries between decision regions, is fully automated and thus particularly well adapted to large cosmological surveys. The source code is available for download at http://www.lesia.obspm.fr/~huertas/galsvm.html To test the method, we use a seeing limited near-infrared (KsK_s band, 2,16μm2,16\mu m) sample observed with WIRCam at CFHT at a median redshift of z0.8z\sim0.8. The machine is trained with a simulated sample built from a local visually classified sample from the SDSS chosen in the high-redshift sample's rest-frame (i band, 0.77μm0.77\mu m) and artificially redshifted to match the observing conditions. We use a 12-dimensional volume, including 5 morphological parameters and other caracteristics of galaxies such as luminosity and redshift. We show that a qualitative separation in two main morphological types (late type and early type) can be obtained with an error lower than 20% up to the completeness limit of the sample (KAB22KAB\sim 22) which is more than 2 times better that what would be obtained with a classical C/A classification on the same sample and indeed comparable to space data. The method is optimized to solve a specific problem, offering an objective and automated estimate of errors that enables a straightforward comparison with other surveys.Comment: 11 pages, 7 figures, 3 tables. Submitted to A&A. High resolution images are available on reques

    The FALCON concept: multi-object spectroscopy combined with MCAO in near-IR

    Get PDF
    A large fraction of the present-day stellar mass was formed between z=0.5 and z~3 and our understanding of the formation mechanisms at work at these epochs requires both high spatial and high spectral resolution: one shall simultaneously} obtain images of objects with typical sizes as small as 1-2kpc(~0''.1), while achieving 20-50 km/s (R >= 5000) spectral resolution. The obvious instrumental solution to adopt in order to tackle the science goal is therefore a combination of multi-object 3D spectrograph with multi-conjugate adaptive optics in large fields. A partial, but still competitive correction shall be prefered, over a much wider field of view. This can be done by estimating the turbulent volume from sets of natural guide stars, by optimizing the correction to several and discrete small areas of few arcsec2 selected in a large field (Nasmyth field of 25 arcmin) and by correcting up to the 6th, and eventually, up to the 60th Zernike modes. Simulations on real extragalactic fields, show that for most sources (>80%), the recovered resolution could reach 0".15-0".25 in the J and H bands. Detection of point-like objects is improved by factors from 3 to >10, when compared with an instrument without adaptive correction. The proposed instrument concept, FALCON, is equiped with deployable mini-integral field units (IFUs), achieving spectral resolutions between R=5000 and 20000. Its multiplex capability, combined with high spatial and spectral resolution characteristics, is a natural ground based complement to the next generation of space telescopes.Comment: ESO Workshop Proceedings: Scientific Drivers for ESO Future VLT/VLTI Instrumentation, 10 pages and 5 figure

    Near-Infrared Spectroscopy of Molecular Hydrogen Emission in Four Reflection Nebulae: NGC 1333, NGC 2023, NGC 2068, and NGC 7023

    Get PDF
    We present near-infrared spectroscopy of fluorescent molecular hydrogen (H_2) emission from NGC 1333, NGC 2023, NGC 2068, and NGC 7023 and derive the physical properties of the molecular material in these reflection nebulae. Our observations of NGC 2023 and NGC 7023 and the physical parameters we derive for these nebulae are in good agreement with previous studies. Both NGC 1333 and NGC 2068 have no previously-published analysis of near-infrared spectra. Our study reveals that the rotational-vibrational states of molecular hydrogen in NGC 1333 are populated quite differently from NGC 2023 and NGC 7023. We determine that the relatively weak UV field illuminating NGC 1333 is the primary cause of the difference. Further, we find that the density of the emitting material in NGC 1333 is of much lower density, with n ~ 10^2 - 10^4 cm^-3. NGC 2068 has molecular hydrogen line ratios more similar to those of NGC 7023 and NGC 2023. Our model fits to this nebula show that the bright, H_2-emitting material may have a density as high as n ~ 10^5 cm^-3, similar to what we find for NGC 2023 and NGC 7023. Our spectra of NGC 2023 and NGC 7023 show significant changes in both the near-infrared continuum and H_2 intensity along the slit and offsets between the peaks of the H_2 and continuum emission. We find that these brightness changes may correspond to real changes in the density and temperatures of the emitting region, although uncertainties in the total column of emitting material along a given line of sight complicates the interpretation. The spatial difference in the peak of the H_2 and near-infrared continuum peaks in NGC 2023 and NGC 7023 shows that the near-infrared continuum is due to a material which can survive closer to the star than H_2 can.Comment: Submitted for publication in ApJ. 34 pages including 12 embedded postscript figures. Also available at http://www.astronomy.ohio-state.edu/~martini/pub

    High angular resolution imaging and infrared spectroscopy of CoRoT candidates

    Get PDF
    Studies of transiting extrasolar planets are of key importance for understanding the nature of planets outside our solar system because their masses, diameters, and bulk densities can be measured. An important part of transit-search programmes is the removal of false-positives. The critical question is how many of the candidates that passed all previous tests are false positives. For our study we selected 25 CoRoT candidates that have already been screened against false-positives using detailed analysis of the light curves and seeing-limited imaging, which has transits that are between 0.7 and 0.05% deep. We observed 20 candidates with the adaptive optics imager NaCo and 18 with the high-resolution infrared spectrograph CRIRES. We found previously unknown stars within 2 arcsec of the targets in seven of the candidates. All of these are too faint and too close to the targets to have been previously detected with seeing-limited telescopes in the optical. Our study thus leads to the surprising results that if we remove all candidates excluded by the sophisticated analysis of the light-curve, as well as carrying out deep imaging with seeing-limited telescopes, still 28-35% of the remaining candidates are found to possess companions that are bright enough to be false-positives. Given that the companion-candidates cluster around the targets and that the J-K colours are consistent with physical companions, we conclude that the companion-candidates are more likely to be physical companions rather than unrelated field stars.Comment: 12 pages, 12 figures, A&A in pres
    corecore