383 research outputs found
Nonlinear nanomechanical resonators for quantum optoelectromechanics
We present a scheme for tuning and controlling nano mechanical resonators by
subjecting them to electrostatic gradient fields, provided by nearby tip
electrodes. We show that this approach enables access to a novel regime of
optomechanics, where the intrinsic nonlinearity of the nanoresonator can be
explored. In this regime, one or several laser driven cavity modes coupled to
the nanoresonator and suitably adjusted gradient fields allow to control the
motional state of the nanoresonator at the single phonon level. Some
applications of this platform have been presented previously [New J. Phys. 14,
023042 (2012), Phys. Rev. Lett. 110, 120503 (2013)]. Here, we provide a
detailed description of the corresponding setup and its optomechanical coupling
mechanisms, together with an in-depth analysis of possible sources of damping
or decoherence and a discussion of the readout of the nanoresonator state.Comment: 15 pages, 6 figure
Finding All Solutions of Equations in Free Groups and Monoids with Involution
The aim of this paper is to present a PSPACE algorithm which yields a finite
graph of exponential size and which describes the set of all solutions of
equations in free groups as well as the set of all solutions of equations in
free monoids with involution in the presence of rational constraints. This
became possible due to the recently invented emph{recompression} technique of
the second author.
He successfully applied the recompression technique for pure word equations
without involution or rational constraints. In particular, his method could not
be used as a black box for free groups (even without rational constraints).
Actually, the presence of an involution (inverse elements) and rational
constraints complicates the situation and some additional analysis is
necessary. Still, the recompression technique is general enough to accommodate
both extensions. In the end, it simplifies proofs that solving word equations
is in PSPACE (Plandowski 1999) and the corresponding result for equations in
free groups with rational constraints (Diekert, Hagenah and Gutierrez 2001). As
a byproduct we obtain a direct proof that it is decidable in PSPACE whether or
not the solution set is finite.Comment: A preliminary version of this paper was presented as an invited talk
at CSR 2014 in Moscow, June 7 - 11, 201
Quantum Structure in Cognition: Why and How Concepts are Entangled
One of us has recently elaborated a theory for modelling concepts that uses
the state context property (SCoP) formalism, i.e. a generalization of the
quantum formalism. This formalism incorporates context into the mathematical
structure used to represent a concept, and thereby models how context
influences the typicality of a single exemplar and the applicability of a
single property of a concept, which provides a solution of the 'Pet-Fish
problem' and other difficulties occurring in concept theory. Then, a quantum
model has been worked out which reproduces the membership weights of several
exemplars of concepts and their combinations. We show in this paper that a
further relevant effect appears in a natural way whenever two or more concepts
combine, namely, 'entanglement'. The presence of entanglement is explicitly
revealed by considering a specific example with two concepts, constructing some
Bell's inequalities for this example, testing them in a real experiment with
test subjects, and finally proving that Bell's inequalities are violated in
this case. We show that the intrinsic and unavoidable character of entanglement
can be explained in terms of the weights of the exemplars of the combined
concept with respect to the weights of the exemplars of the component concepts.Comment: 10 page
Recommended from our members
Effects of classification context on categorization in natural categories
The patterns of classification of borderline instances of eight common taxonomic categories were examined under three different instructional conditions to test two predictions: first, that lack of a specified context contributes to vagueness in categorization, and second, that altering the purpose of classification can lead to greater or lesser dependence on similarity in classification. The instructional conditions contrasted purely pragmatic with more technical/quasi-legal contexts as purposes for classification, and these were compared with a no-context control. The measures of category vagueness were between-subjects disagreement and within-subjects consistency, and the measures of similarity based categorization were category breadth and the correlation of instance categorization probability with mean rated typicality, independently measured in a neutral context. Contrary to predictions, none of the measures of vagueness, reliability, category breadth, or correlation with typicality were generally affected by the instructional setting as a function of pragmatic versus technical purposes. Only one subcondition, in which a situational context was implied in addition to a purposive context, produced a significant change in categorization. Further experiments demonstrated that the effect of context was not increased when participants talked their way through the task, and that a technical context did not elicit more all-or-none categorization than did a pragmatic context. These findings place an important boundary condition on the effects of instructional context on conceptual categorization
Recommended from our members
Semantic memory redux: an experimental test of hierarchical category representation
Four experiments investigated the classic issue in semantic memory of whether people organize categorical information in hierarchies and use inference to retrieve information from them, as proposed by Collins & Quillian (1969). Past evidence has focused on RT to confirm sentences such as “All birds are animals” or “Canaries breathe.” However, confounding variables such as familiarity and associations between the terms have led to contradictory results. Our experiments avoided such problems by teaching subjects novel materials. Experiment 1 tested an implicit hierarchical structure in the features of a set of studied objects (e.g., all brown objects were large). Experiment 2 taught subjects nested categories of artificial bugs. In Experiment 3, subjects learned a tree structure of novel category hierarchies. In all three, the results differed from the predictions of the hierarchical inference model. In Experiment 4, subjects learned a hierarchy by means of paired associates of novel category names. Here we finally found the RT signature of hierarchical inference. We conclude that it is possible to store information in a hierarchy and retrieve it via inference, but it is difficult and avoided whenever possible. The results are more consistent with feature comparison models than hierarchical models of semantic memory
Assessing Semantic Similarities among Geospatial Feature Class Definitions
The assessment of semantic similarity among objects is a basic requirement for semantic interoperability. This paper presents an innovative approach to semantic similarity assessment by combining the advantages of two different strategies: featurematching process and semantic distance calculation. The model involves a knowledge base of spatial concepts that consists of semantic relations (is-a and part-whole) and distinguishing features (functions, parts, and attributes). By taking into consideration cognitive properties of similarity assessments, this model expects to represent a cognitively plausible and computationally achievable method for measuring the degree of interoperability
Feature integration in natural language concepts
Two experiments measured the joint influence of three key sets of semantic features on the frequency with which artifacts (Experiment 1) or plants and creatures (Experiment 2) were categorized in familiar categories. For artifacts, current function outweighed both originally intended function and current appearance. For biological kinds, appearance and behavior, an inner biological function, and appearance and behavior of offspring all had similarly strong effects on categorization. The data were analyzed to determine whether an independent cue model or an interactive model best accounted for how the effects of the three feature sets combined. Feature integration was found to be additive for artifacts but interactive for biological kinds. In keeping with this, membership in contrasting artifact categories tended to be superadditive, indicating overlapping categories, whereas for biological kinds, it was subadditive, indicating conceptual gaps between categories. It is argued that the results underline a key domain difference between artifact and biological concepts
Iterative algorithm versus analytic solutions of the parametrically driven dissipative quantum harmonic oscillator
We consider the Brownian motion of a quantum mechanical particle in a
one-dimensional parabolic potential with periodically modulated curvature under
the influence of a thermal heat bath. Analytic expressions for the
time-dependent position and momentum variances are compared with results of an
iterative algorithm, the so-called quasiadiabatic propagator path integral
algorithm (QUAPI). We obtain good agreement over an extended range of
parameters for this spatially continuous quantum system. These findings
indicate the reliability of the algorithm also in cases for which analytic
results may not be available a priori.Comment: 15 pages including 11 figures, one reference added, minor typos
correcte
- …