3,833 research outputs found
Measuring the properties of extragalactic dust and implications for the Hubble diagram
Scattering and absorption of light by a homogeneous distribution of
intergalactic large dust grains has been proposed as an alternative,
non-cosmological explanation for the faintness of Type Ia supernovae at z\s im
0.5. We investigate the differential extinction for high-redshift sources
caused by extragalactic dust along the line of sight.
Future observations of Type Ia supernovae up to , e.g. by the
proposed SNAP satellite, will allow the measurement of the properties of dust
over cosmological distances. We show that 1% {\em relative} spectrophotometric
accuracy (or broadband photometry) in the wavelength interval 0.7--1.5 m
is required to measure the extinction caused by ``grey'' dust down to magnitudes.
We also argue that the presence of grey dust is not necessarily inconsistent
with the recent measurement of the brightness of a supernova at (SN
1997ff), in the absence of accurate spectrophotometric information of the
supernova.Comment: Accepted by A&
Dark Energy Accretion onto a Black Hole in an Expanding Universe
By using the solution describing a black hole embedded in the FLRW universe,
we obtain the evolving equation of the black hole mass expressed in terms of
the cosmological parameters. The evolving equation indicates that in the
phantom dark energy universe the black hole mass becomes zero before the Big
Rip is reached.Comment: 7 pages, no figures, errors is correcte
Adding ROS Scavengers to Cold K\u3csup\u3e+\u3c/sup\u3e Cardioplegia Reduces Superoxide Emission During 2 h Global Cold Cardiac Ischemia
We reported that the combination of reactive oxygen species (ROS) quenchers Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), catalase, and glutathione (MCG) given before 2 hours cold ischemia better protected cardiac mitochondria against cold ischemia and warm reperfusion (IR)-induced damage than MnTBAP alone. Here, we hypothesize that high K+ cardioplegia (CP) plus MCG would provide added protection of mitochondrial bioenergetics and cardiac function against IR injury. Using fluorescence spectrophotometry, we monitored redox balance, ie reduced nicotinamide adenine dinucleotide and flavin adenine dinucleotide (NADH/FAD), superoxide (O2 •−), and mitochondrial Ca2+ (m[Ca2+]) in the left ventricular free wall. Guinea pig isolated hearts were perfused with either Krebs Ringer’s (KR) solution, CP, or CP + MCG, before and during 27°C perfusion followed immediately by 2 hours of global ischemia at 27°C. Drugs were washed out with KR at the onset of 2 hours 37°C reperfusion. After 120 minutes warm reperfusion, myocardial infarction was lowest in the CP + MCG group and highest in the KR group. Developed left ventricular pressure recovery was similar in CP and CP + MCG and was better than in the KR group. O2 •−, m[Ca2+], and NADH/FAD were significantly different between the treatment and KR groups. O2 •− was lower in CP + MCG than in the CP group. This study suggests that CP and ROS quenchers act in parallel to improve mitochondrial function and to provide protection against IR injury at 27°C
Comparison of Cumulative Planimetry versus Manual Dissection to Assess Experimental Infarct Size in Isolated Hearts
Introduction
Infarct size (IS) is an important variable to estimate cardiac ischemia/reperfusion injury in animal models. Triphenyltetrazolium chloride (TTC) stains viable cells red while leaving infarcted cells unstained. To quantify IS, infarcted and non-infarcted tissue is often manually dissected and weighed (IS-DW). An alternative is to measure infarcted areas by cumulative planimetry (IS-CP). Methods
We prospectively compared these two methods in 141 Langendorff-prepared guinea pig hearts (1.44 ± 0.02 g) that were part of different studies on mechanisms of cardioprotection. Hearts were perfused with Krebs–Ringer\u27s and subjected to 30 min global ischemia after various cardioprotective treatments. Two hours after reperfusion hearts were cut into 6–7 transverse sections (3 mm) and stained for 5 min in 1% TTC and 0.1 M KH2PO4 buffer (pH 7.4, 38 °C). Each slice was first scanned and its infarcted area measured with Image 1.62 software (NIH). Infarctions in individual slices of each heart were averaged (IS-CP) on the basis of their weight. After scanning, IS-DW was determined by careful manual dissection of infarcted from non-infarcted tissue and measuring their respective total weight. Results
We found limited tissue permeation of TTC in relation to the slice thickness leaving tissue in the center unstained, as well as significant cross-contamination of stained vs. unstained tissue after manual dissection. IS-CP and IS-DW ranged from 6.0 to 73.1% and 19.4 to 70.5%, respectively, and correlated as follows: IS-DW = (27.6 ± 1.4) + (0.518 ± 0.038) • IS-CP; r = 0.75 (Pearson), p \u3c 0.001. In addition, IS-CP correlated better with return of function after reperfusion like developed left ventricular pressure, contractility and relaxation, and myocardial oxygen consumption. Discussion
Despite a good correlation between both methods, limited tissue permeation by TTC diffusion and limited precision in the ability to manually dissect stained from unstained tissue leads to an overestimation of infarct size by dissection and weighing compared to cumulative planimetry
Constraining Dark Energy and Cosmological Transition Redshift with Type Ia Supernovae
The property of dark energy and the physical reason for acceleration of the
present universe are two of the most difficult problems in modern cosmology.
The dark energy contributes about two-thirds of the critical density of the
present universe from the observations of type-Ia supernova (SNe Ia) and
anisotropy of cosmic microwave background (CMB).The SN Ia observations also
suggest that the universe expanded from a deceleration to an acceleration phase
at some redshift, implying the existence of a nearly uniform component of dark
energy with negative pressure. We use the ``gold'' sample containing 157 SNe Ia
and two recent well-measured additions, SNe Ia 1994ae and 1998aq to explore the
properties of dark energy and the transition redshift. For a flat universe with
the cosmological constant, we measure , which
is consistent with Riess et al. The transition redshift is
. We also discuss several dark energy models that
define the of the parameterized equation of state of dark energy
including one parameter and two parameters ( being the ratio of the
pressure to energy density). Our calculations show that the accurately
calculated transition redshift varies from to
across these models. We also calculate the minimum
redshift at which the current observations need the universe to
accelerate.Comment: 16 pages, 5 figures, 1 tabl
Naked Singularity in a Modified Gravity Theory
The cosmological constant induced by quantum fluctuation of the graviton on a
given background is considered as a tool for building a spectrum of different
geometries. In particular, we apply the method to the Schwarzschild background
with positive and negative mass parameter. In this way, we put on the same
level of comparison the related naked singularity (-M) and the positive mass
wormhole. We discuss how to extract information in the context of a f(R)
theory. We use the Wheeler-De Witt equation as a basic equation to perform such
an analysis regarded as a Sturm-Liouville problem . The application of the same
procedure used for the ordinary theory, namely f(R)=R, reveals that to this
approximation level, it is not possible to classify the Schwarzschild and its
naked partner into a geometry spectrum.Comment: 8 Pages. Contribution given to DICE 2008. To appear in the
proceeding
Reconciliation of the Surface Brightness Fluctuations and Type Ia Supernovae Distance Scales
We present Hubble Space Telescope measurements of surface brightness
fluctuations (SBF) distances to early-type galaxies that have hosted Type Ia
supernovae (SNIa). The agreement in the relative SBF and SNIa multicolor light
curve shape and delta-m_15 distances is excellent. There is no systematic scale
error with distance, and previous work has shown that SBF and SNIa give
consistent ties to the Hubble flow. However, we confirm a systematic offset of
about 0.25 mag in the distance zero points of the two methods, and we trace
this offset to their respective Cepheid calibrations. SBF has in the past been
calibrated with Cepheid distances from the H_0 Key Project team, while SNIa
have been calibrated with Cepheid distances from the team composed of Sandage,
Saha, and collaborators. When the two methods are calibrated in a consistent
way, their distances are in superb agreement. Until the conflict over the
``long'' and ``short'' extragalactic Cepheid distances among many galaxies is
resolved, we cannot definitively constrain the Hubble constant to better than
about 10%, even leaving aside the additional uncertainty in the distance to the
Large Magellanic Cloud, common to both Cepheid scales. However, recent
theoretical SBF predictions from stellar population models favor the Key
Project Cepheid scale, while the theoretical SNIa calibration lies between the
long and short scales. In addition, while the current SBF distance to M31/M32
is in good agreement with the RR Lyrae and red giant branch distances,
calibrating SBF with the longer Cepheid scale would introduce a 0.3 mag offset
with respect to the RR Lyrae scale.Comment: 13 pages, 3 PostScript figures, LaTeX with AASTeX 5.02 and natbib.sty
v7.0 (included). Accepted for publication in The Astrophysical Journa
Hubble Residuals of Nearby Type Ia Supernovae Are Correlated with Host Galaxy Masses
From Sloan Digital Sky Survey u'g'r'i'z' imaging, we estimate the stellar
masses of the host galaxies of 70 low redshift SN Ia (0.015 < z < 0.08) from
the hosts' absolute luminosities and mass-to-light ratios. These nearby SN were
discovered largely by searches targeting luminous galaxies, and we find that
their host galaxies are substantially more massive than the hosts of SN
discovered by the flux-limited Supernova Legacy Survey. Testing four separate
light curve fitters, we detect ~2.5{\sigma} correlations of Hubble residuals
with both host galaxy size and stellar mass, such that SN Ia occurring in
physically larger, more massive hosts are ~10% brighter after light curve
correction. The Hubble residual is the deviation of the inferred distance
modulus to the SN, calculated from its apparent luminosity and light curve
properties, away from the expected value at the SN redshift. Marginalizing over
linear trends in Hubble residuals with light curve parameters shows that the
correlations cannot be attributed to a light curve-dependent calibration error.
Combining 180 higher-redshift ESSENCE, SNLS, and HigherZ SN with 30 nearby SN
whose host masses are less than 10^10.8 solar masses in a cosmology fit yields
1+w=0.22 +0.152/-0.143, while a combination where the 30 nearby SN instead have
host masses greater than 10^10.8 solar masses yields 1+w=-0.03 +0.217/-0.108.
Progenitor metallicity, stellar population age, and dust extinction correlate
with galaxy mass and may be responsible for these systematic effects. Host
galaxy measurements will yield improved distances to SN Ia.Comment: 16 pages, 6 figures, published in ApJ, minor change
Present Acceleration of Universe, Holographic Dark Energy and Brans-Dicke Theory
The present day accelerated expansion of the universe is naturally addressed
within the Brans-Dicke theory just by using holographic dark energy model with
inverse of Hubble scale as IR cutoff. It is also concluded that if the universe
continues to expand, then one day it might be completely filled with dark
energy.Comment: 10 page
KATP Channel Openers Have Opposite Effects on Mitochondrial Respiration Under Different Energetic Conditions
Mitochondrial (m) KATP channel opening has been implicated in triggering cardiac preconditioning. Its consequence on mitochondrial respiration, however, remains unclear. We investigated the effects of two different KATP channel openers and antagonists on mitochondrial respiration under two different energetic conditions. Oxygen consumption was measured for complex I (pyruvate/malate) or complex II (succinate with rotenone) substrates in mitochondria from fresh guinea pig hearts. One of two mKATP channel openers, pinacidil or diazoxide, was given before adenosine diphosphate in the absence or presence of an mKATP channel antagonist, glibenclamide or 5-hydroxydecanoate. Without ATP synthase inhibition, both mKATP channel openers differentially attenuated mitochondrial respiration. Neither mKATP channel antagonist abolished these effects. When ATP synthase was inhibited by oligomycin to decrease [ATP], both mKATP channel openers accelerated respiration for both substrate groups. This was abolished by mKATP channel blockade. Thus, under energetically more physiological conditions, the main effect of mKATP channel openers on mitochondrial respiration is differential inhibition independent of mKATP channel opening. In contrast, under energetically less physiological conditions, mKATP channel opening can be evidenced by accelerated respiration and blockade by antagonists. Therefore, the effects of mKATP channel openers on mitochondrial function likely depend on the experimental conditions and the cell\u27s underlying energetic state
- …