71 research outputs found
Towards a better characterisation of deep-diving whales’ distributions by using prey distribution model outputs?
In habitat modelling, environmental variables are assumed to be proxies of lower trophic levels
distribution and by extension, of marine top predator distributions. More proximal variables,
such as potential prey fields, could refine relationships between top predator
distributions and their environment. In situ data on prey distributions are not available over
large spatial scales but, a numerical model, the Spatial Ecosystem And POpulation DYnamics
Model (SEAPODYM), provides simulations of the biomass and production of zooplankton
and six functional groups of micronekton at the global scale. Here, we explored whether
generalised additive models fitted to simulated prey distribution data better predicted deepdiver
densities (here beaked whales Ziphiidae and sperm whales Physeter macrocephalus)
than models fitted to environmental variables. We assessed whether the combination of
environmental and prey distribution data would further improve model fit by comparing their
explanatory power. For both taxa, results were suggestive of a preference for habitats associated
with topographic features and thermal fronts but also for habitats with an extended
euphotic zone and with large prey of the lower mesopelagic layer. For beaked whales, no
SEAPODYM variable was selected in the best model that combined the two types of variables,
possibly because SEAPODYM does not accurately simulate the organisms on which
beaked whales feed on. For sperm whales, the increase model performance was only marginal.
SEAPODYM outputs were at best weakly correlated with sightings of deep-diving cetaceans, suggesting SEAPODYM may not accurately predict the prey fields of these taxa.
This study was a first investigation and mostly highlighted the importance of the physiographic
variables to understand mechanisms that influence the distribution of deep-diving
cetaceans. A more systematic use of SEAPODYM could allow to better define the limits of
its use and a development of the model that would simulate larger prey beyond 1,000 m
would probably better characterise the prey of deep-diving cetaceans.En prens
From the Eye of the Albatrosses: A Bird-Borne Camera Shows an Association between Albatrosses and a Killer Whale in the Southern Ocean
Albatrosses fly many hundreds of kilometers across the open ocean to find and feed upon their prey. Despite the growing number of studies concerning their foraging behaviour, relatively little is known about how albatrosses actually locate their prey. Here, we present our results from the first deployments of a combined animal-borne camera and depth data logger on free-ranging black-browed albatrosses (Thalassarche melanophrys). The still images recorded from these cameras showed that some albatrosses actively followed a killer whale (Orcinus orca), possibly to feed on food scraps left by this diving predator. The camera images together with the depth profiles showed that the birds dived only occasionally, but that they actively dived when other birds or the killer whale were present. This association with diving predators or other birds may partially explain how albatrosses find their prey more efficiently in the apparently ‘featureless’ ocean, with a minimal requirement for energetically costly diving or landing activities
An Assessment of the Effectiveness of High Definition Cameras as Remote Monitoring Tools for Dolphin Ecology Studies.
Research involving marine mammals often requires costly field programs. This paper assessed whether the benefits of using cameras outweighs the implications of having personnel performing marine mammal detection in the field. The efficacy of video and still cameras to detect Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the Fremantle Harbour (Western Australia) was evaluated, with consideration on how environmental conditions affect detectability. The cameras were set on a tower in the Fremantle Port channel and videos were perused at 1.75 times the normal speed. Images from the cameras were used to estimate position of dolphins at the water’s surface. Dolphin detections ranged from 5.6 m to 463.3 m for the video camera, and from 10.8 m to 347.8 m for the still camera. Detection range showed to be satisfactory when compared to distances at which dolphins would be detected by field observers. The relative effect of environmental conditions on detectability was considered by fitting a Generalised Estimation Equations (GEEs) model with Beaufort, level of glare and their interactions as predictors and a temporal auto-correlation structure. The best fit model indicated level of glare had an effect, with more intense periods of glare corresponding to lower occurrences of observed dolphins. However this effect was not large (-0.264) and the parameter estimate was associated with a large standard error (0.113).The limited field of view was the main restraint in that cameras can be only applied to detections of animals observed rather than counts of individuals. However, the use of cameras was effective for long term monitoring of occurrence of dolphins, outweighing the costs and reducing the health and safety risks to field personal. This study showed that cameras could be effectively implemented onshore for research such as studying changes in habitat use in response to development and construction activities
Distribution maps of cetacean and seabird populations in the North‐East Atlantic
1. Distribution maps of cetaceans and seabirds at basin and monthly scales are needed for conservation and marine management. These are usually created from standardized and systematic aerial and vessel surveys, with recorded animal den- sities interpolated across study areas. However, distribution maps at basin and monthly scales have previously not been possible because individual surveys have restricted spatial and temporal coverage.
2. This study develops an alternative approach consisting of: (a) collating diverse survey data to maximize spatial and temporal coverage, (b) using detection func- tions to estimate variation in the surface area covered (km2) among these surveys, standardizing measurements of effort and animal densities, and (c) developing species distribution models (SDM) that overcome issues with heterogeneous and uneven coverage.
3. 2.68 million km of survey data in the North-East Atlantic between 1980 and 2018 were collated and standardized. SDM using Generalized Linear Models and General Estimating Equations in a hurdle approach were developed. Distribution maps were then created for 12 cetacean and 12 seabird species at 10 km and monthly resolution. Qualitative and quantitative assessment indicated good model performance.
4. Synthesis and applications. This study provides the largest ever collation and standardization of diverse survey data for cetaceans and seabirds, and the most comprehensive distribution maps of these taxa in the North-East Atlantic. These distribution maps have numerous applications including the identification of im- portant areas needing protection, and the quantification of overlap between vul- nerable species and anthropogenic activities. This study demonstrates how the analysis of existing and diverse survey data can meet conservation and marine management needs.Versión del editor4,7
Lenalidomide in combination with dexamethasone at first relapse in comparison with its use as later salvage therapy in relapsed or refractory multiple myeloma
This subset analysis of data from two phase III studies in patients with relapsed or refractory multiple myeloma (MM) evaluated the benefit of initiating lenalidomide plus dexamethasone at first relapse. Multivariate analysis showed that fewer prior therapies, along with β2-microglobulin (≤2.5 mg/L), predicted a better time to progression (TTP; study end-point) with lenalidomide plus dexamethasone treatment. Patients with one prior therapy showed a significant improvement in benefit after first relapse compared with those who received two or more therapies. Patients with one prior therapy had significantly prolonged median TTP (17.1 vs. 10.6 months; P=0.026) and progression-free survival (14.1 vs. 9.5 months, P=0.047) compared with patients treated in later lines. Overall response rates were higher (66.9% vs. 56.8%, P=0.06), and the complete response plus very good partial response rate was significantly higher in first relapse (39.8% vs. 27.7%, P=0.025). Importantly, overall survival was significantly prolonged for patients treated with lenalidomide plus dexamethasone with one prior therapy, compared with patients treated later in salvage (median of 42.0 vs. 35.8 months, P=0.041), with no differences in toxicity, dose reductions, or discontinuations despite longer treatment. Therefore, lenalidomide plus dexamethasone is both effective and tolerable for second-line MM therapy and the data suggest that the greatest benefit occurs with earlier use
Advances in Monte-Carlo code TRIPOLI-4®’s treatment of the electromagnetic cascade
TRIPOLI-4® is a Monte-Carlo particle-transport code developed at CEA-Saclay (France) that is employed in the domains of nuclear-reactor physics, criticality-safety, shielding/radiation protection and nuclear instrumentation. The goal of this paper is to report on current developments, validation and verification made in TRIPOLI-4 in the electron/positron/photon sector. The new capabilities and improvements concern refinements to the electron transport algorithm, the introduction of a charge-deposition score, the new thick-target bremsstrahlung option, the upgrade of the bremsstrahlung model and the improvement of electron angular straggling at low energy. The importance of each of the developments above is illustrated by comparisons with calculations performed with other codes and with experimental data
The stranding anomaly as population indicator: the case of Harbour Porpoise <i>Phocoena phocoena</i> in North-Western Europe
Ecological indicators for monitoring strategies are expected to combine three major characteristics: ecological significance, statistical credibility, and cost-effectiveness. Strategies based on stranding networks rank highly in cost-effectiveness, but their ecological significance and statistical credibility are disputed. Our present goal is to improve the value of stranding data as population indicator as part of monitoring strategies by constructing the spatial and temporal null hypothesis for strandings. The null hypothesis is defined as: small cetacean distribution and mortality are uniform in space and constant in time. We used a drift model to map stranding probabilities and predict stranding patterns of cetacean carcasses under H-0 across the North Sea, the Channel and the Bay of Biscay, for the period 1990-2009. As the most common cetacean occurring in this area, we chose the harbour porpoise <i>Phocoena phocoena</i> for our modelling. The difference between these strandings expected under H-0 and observed strandings is defined as the stranding anomaly. It constituted the stranding data series corrected for drift conditions. Seasonal decomposition of stranding anomaly suggested that drift conditions did not explain observed seasonal variations of porpoise strandings. Long-term stranding anomalies increased first in the southern North Sea, the Channel and Bay of Biscay coasts, and finally the eastern North Sea. The hypothesis of changes in porpoise distribution was consistent with local visual surveys, mostly SCANS surveys (1994 and 2005). This new indicator could be applied to cetacean populations across the world and more widely to marine megafauna
- …