2,655 research outputs found

    Superconductivity induced by oxygen deficiency in Sr-doped LaOFeAs

    Full text link
    We synthesized Sr-doped La0.85Sr0.15OFeAsLa_{0.85}Sr_{0.15}OFeAs sample with single phase, and systematically studied the effect of oxygen deficiency in the Sr-doped LaOFeAs system. It is found that substitution of Sr for La indeed induces the hole carrier evidenced by positive thermoelectric power (TEP), but no bulk superconductivity is observed. The superconductivity can be realized by annealing the as-grown sample in vacuum to produce the oxygen deficiency. With increasing the oxygen deficiency, the superconducting transition temperature (TcT_c) increases and maximum TcT_c reaches about 26 K the same as that in La(O,F)FeAs. TEP dramatically changes from positive to negative in the nonsuperconducting as-grown sample to the superconducting samples with oxygen deficiency. While RHR_H is always negative for all samples (even for Sr-doped as grown sample). It suggests that the La0.85Sr0.15O1δFeAsLa_{0.85}Sr_{0.15}O_{1-\delta}FeAs is still electron-type superconductor.Comment: 4 pages, 4 figure

    Transport properties and superconductivity in Ba1xMxFe2As2Ba_{1-x}M_xFe_2As_2 (M=La and K) with double FeAs layers

    Full text link
    We synthesized the samples Ba1xMxFe2As2Ba_{1-x}M_xFe_2As_2 (M=La and K) with ThCr2Si2ThCr_2Si_2-type structure. These samples were systematically characterized by resistivity, thermoelectic power (TEP) and Hall coefficient (RHR_H). BaFe2As2BaFe_2As_2 shows an anomaly in resistivity at about 140 K. Substitution of La for Ba leads to a shift of the anomaly to low temperature, but no superconducting transition is observed. Potassium doping leads to suppression of the anomaly in resistivity and induces superconductivity at 38 K as reported by Rotter et al.\cite{rotter}. The Hall coefficient and TEP measurements indicate that the TEP is negative for BaFe2As2BaFe_2As_2 and La-doped BaFe2As2BaFe_2As_2, indicating n-type carrier; while potassium doping leads to change of the sign in RHR_H and TEP. It definitely indicates p-type carrier in superconducting Ba1xKxFe2As2Ba_{1-x}K_xFe_2As_2 with double FeAs layers, being in contrast to the case of LnO1xFxFeAsLnO_{1-x}F_xFeAs with single FeAs layer. A similar superconductivity is also observed in the sample with nominal composition Ba1xKxOFe2As2Ba_{1-x}K_xOFe_2As_2.Comment: 4 pages, 4 figure

    Thermodynamic properties of Ba1-xMxFe2As2 (M = La and K)

    Full text link
    The specific heat C(T)C(T) of BaFe2_2As2_2 single crystal, electron-doped Ba0.7_{0.7}La0.3_{0.3}Fe2_2As2_2 and hole-doped Ba0.5_{0.5}K0.5_{0.5}Fe2_2As2_2 polycrystals were measured. For undoped BaFe2_2As2_2 single crystal, a very sharp specific heat peak was observed at 136 K. This is attributed to the structural and antiferromagnetic transitions occurring at the same temperature. C(T)C(T) of the electron-doped non-superconducting Ba0.7_{0.7}La0.3_{0.3}Fe2_2As2_2 also shows a small peak at 120 K, indicating a similar but weaker structural/antiferromagnetic transition. For the hole-doped superconducting Ba0.5_{0.5}K0.5_{0.5}Fe2_2As2_2, a clear peak of C/TC/T was observed at TcT_c = 36 K, which is the highest peak seen at superconducting transition for iron-based high-TcT_c superconductors so far. The electronic specific heat coefficient γ\gamma and Debye temperature ΘD\Theta_D of these compounds were obtained from the low temperature data

    A general model for collaboration networks

    Full text link
    In this paper, we propose a general model for collaboration networks. Depending on a single free parameter "{\bf preferential exponent}", this model interpolates between networks with a scale-free and an exponential degree distribution. The degree distribution in the present networks can be roughly classified into four patterns, all of which are observed in empirical data. And this model exhibits small-world effect, which means the corresponding networks are of very short average distance and highly large clustering coefficient. More interesting, we find a peak distribution of act-size from empirical data which has not been emphasized before of some collaboration networks. Our model can produce the peak act-size distribution naturally that agrees with the empirical data well.Comment: 10 pages, 10 figure

    Angular dependence of resistivity in the superconducting state of NdFeAsO0.82_{0.82}F0.18_{0.18} single crystals

    Full text link
    We report the results of angle dependent resistivity of NdFeAsO0.82_{0.82}F0.18_{0.18} single crystals in the superconducting state. By doing the scaling of resistivity within the frame of the anisotropic Ginzburg-Landau theory, it is found that the angle dependent resistivity measured under different magnetic fields at a certain temperature can be collapsed onto one curve. As a scaling parameter, the anisotropy Γ\Gamma can be determined for different temperatures. It is found that Γ(T)\Gamma(T) increases slowly with decreasing temperature, varying from Γ\Gamma \simeq 5.48 at T=50 K to Γ\Gamma \simeq 6.24 at T=44 K. This temperature dependence can be understood within the picture of multi-band superconductivity.Comment: 7 pages, 4 figure

    Alignment of Carbon Nanotube Additives for Improved Performance of Magnesium Diboride Superconductors

    Full text link
    The rapid progress on MgB2 superconductor since its discovery[1] has made this material a strong competitor to low and high temperature superconductors (HTS) for applications with a great potential to catch the niche market such as in magnetic resonant imaging (MRI). Thanks to the lack of weak links and the two-gap superconductivity of MgB2 [2,3] a number of additives have been successfully used to enhance the critical current density, Jc and the upper critical field, Hc2.[4-12] Carbon nanotubes (CNTs) have unusually electrical, mechanical and thermal properties[13-16] and hence is an ideal component to fabricate composites for improving their performance. To take advantages of the extraordinary properties of CNTs it is important to align CNTs in the composites. Here we report a method of alignment of CNTs in the CNT/MgB2 superconductor composite wires through a readily scalable drawing technique. The aligned CNT doped MgB2 wires show an enhancement in magnetic Jc(H) by more than an order of magnitude in high magnetic fields, compared to the undoped ones. The CNTs have also significantly enhanced the heat transfer and dissipation. CNTs have been used mainly in structural materials, but here the advantage of their use in functional composites is shown and this has wider ramifications for other functional materials.Comment: 11 pages, 3 figures. to be published in Advanced Material

    Growth and characterization of A_{1-x}K_xFe_2As_2 (A = Ba, Sr) single crystals with x=0 - 0.4

    Full text link
    Single crystals of A1x_{1-x}Kx_xFe2_2As2_2 (A=Ba, Sr) with high quality have been grown successfully by FeAs self-flux method. The samples have sizes up to 4 mm with flat and shiny surfaces. The X-ray diffraction patterns suggest that they have high crystalline quality and c-axis orientation. The non-superconducting crystals show a spin-density-wave (SDW) instability at about 173 K and 135 K for Sr-based and Ba-based compound, respectively. After doping K as the hole dopant into the BaFe2_2As2_2 system, the SDW transition is smeared, and superconducting samples with the compound of Ba1x_{1-x}Kx_xFe2_2As2_2 (0 <x< x \leqslant 0.4) are obtained. The superconductors characterized by AC susceptibility and resistivity measurements exhibit very sharp superconducting transition at about 36 K, 32 K, 27 K and 23 K for x= 0.40,0.28,0.25 and 0.23, respectively.Comment: 9 pages, 6 figures, 1 table. This paper together with new data are modified into a new pape

    Local coexpression domains in the genome of rice show no microsynteny with Arabidopsis domains

    Get PDF
    Chromosomal coexpression domains are found in a number of different genomes under various developmental conditions. The size of these domains and the number of genes they contain vary. Here, we define local coexpression domains as adjacent genes where all possible pair-wise correlations of expression data are higher than 0.7. In rice, such local coexpression domains range from predominantly two genes, up to 4, and make up ∼5% of the genomic neighboring genes, when examining different expression platforms from the public domain. The genes in local coexpression domains do not fall in the same ontology category significantly more than neighboring genes that are not coexpressed. Duplication, orientation or the distance between the genes does not solely explain coexpression. The regulation of coexpression is therefore thought to be regulated at the level of chromatin structure. The characteristics of the local coexpression domains in rice are strikingly similar to such domains in the Arabidopsis genome. Yet, no microsynteny between local coexpression domains in Arabidopsis and rice could be identified. Although the rice genome is not yet as extensively annotated as the Arabidopsis genome, the lack of conservation of local coexpression domains may indicate that such domains have not played a major role in the evolution of genome structure or in genome conservation
    corecore