40 research outputs found
Nitrate deposition in northern hardwood forests and the nitrogen metabolism of Acer saccharum marsh
It is generally assumed that plant assimilation constitutes the major sink for anthropogenic Nitrate NO 3 − deposited in temperate forests because plant growth is usually limited by nitrogen (N) availability. Nevertheless, plants are known to vary widely in their capacity for NO 3 − uptake and assimilation, and few studies have directly measured these parameters for overstory trees. Using a combination of field and greenhouse experiments, we studied the N nutrition of Acer saccharum Marsh. in four northern hardwood forests receiving experimental NO 3 − additions equivalent to 30 kg N ha −1 year −1 . We measured leaf and fine-root nitrate reductase activity (NRA) of overstory trees using an in vivo assay and used 15 N to determine the kinetic parameters of NO 3 − uptake by excised fine roots. In two greenhouse experiments, we measured leaf and root NRA in A. saccharum seedlings fertilized with 0–3.5 g NO 3 − −N m −2 and determined the kinetic parameters of NO 3 − and NH 4 + uptake in excised roots of seedlings. In both overstory trees and seedlings, rates of leaf and fine root NRA were substantially lower than previously reported rates for most woody plants and showed no response to NO 3 − fertilization (range = non-detectable to 33 nmol NO 2 − g −1 h −1 ). Maximal rates of NO 3 − uptake in overstory trees also were low, ranging from 0.2 to 1.0 μmol g −1 h −1 . In seedlings, the mean V max for NO 3 − uptake in fine roots (1 μmol g −1 h −1 ) was approximately 30 times lower than the V max for NH 4 + uptake (33 μmol g −1 h −1 ). Our results suggest that A. saccharum satisfies its N demand through rapid NH 4 + uptake and may have a limited capacity to serve as a direct sink for atmospheric additions of NO 3 − .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47695/1/442_2004_Article_BF00334659.pd
Backscatter in stratified turbulence
In this paper, kinetic and potential energy transfers around a spectral test filter scale in direct numerical simulations of decaying stratified turbulence are studied in both physical and spectral domains. It is shown that while the domain-averaged effective subgrid scale energy transfer in physical space is a net downscale cascade, it is actually a combination of large values of downscale and upscale transfer, i.e. forward- and backscatter, in which the forward scatter is slightly dominant. Our results suggest that spectral backscatter in stratified turbulence depends on the buoyancy Reynolds number R-eb and the filtering scale Delta(test). When the test filter scale Delta(test) is around the dissipation scale L-d, transfer spectra show spectral backscatter from sub-filter to intermediate scales, as reported elsewhere. However, we find that this spectral backscatter is due to viscous effects at vertical scales around the test filter. It is also shown that there is a non-local energy transfer from scales larger than the buoyancy scale L-b to small scales. The effective turbulent Prandtl number spectra demonstrate that the assumption Pr-t approximate to 1 is reasonable for the local energy transfer. (C) 2016 Elsevier Masson SAS. All rights reserved