1,289 research outputs found
Asymptotic models of meridional flows in thin viscous accretion disks
We present the results of numerical integrations yielding the structure of
and meridional flow in axisymmetric thin viscous accretion disk models. The
solutions are obtained by simplifying and approximating first the equations,
using systematic asymptotic expansions in the small parameter ,
measuring the relative disk thickness. The vertical structure is solved
including radiative transfer in the diffusion approximation. Carrying out the
expansion to second order in we obtain, for low enough values of the
viscosity parameter , solutions containing {\em backflows}. These
solutions are similar to the results first found by Urpin (1984), who used
approximations that are only valid for large radii and the asymptotic
analytical solutions of Klu\'zniak & Kita (1997), valid only for polytropic
disks. Our results may be important for several outstanding issues in accretion
disk theory.Comment: 5 figure
Revised research about chaotic dynamics in Manko et al. spacetime
A recent work by Dubeibe et al. [Phys. Rev. D 75, 023008 (2007)] stated that
chaos phenomenon of test particles in gravitational field of rotating neutron
stars which are described by Manko, Sanabria-Gomez, and Manko (Manko et al.)
metric can only occur when the stars have oblate deformation. But the chaotic
motions they found are limited in a very narrow zone which is very close to the
center of the massive bodies. This paper argues that this is impossible because
the region is actually inside of the stars, so the motions cannot exist at this
place. In this paper, we scan all parameters space and find chaos and unstable
fixed points outside of stars with big mass-quadrupole moments. The
calculations show that chaos can only occur when the stars have prolate
deformation. Because real deformation of stars should be oblate, all orbits of
test particles around the rotating neutron stars described by Manko et al.
solutions are regular. The case of nonzero dipolar magnetic moment has also
been taken into account in this study.Comment: 6 pages, 5 figure
How much measurement independence is needed in order to demonstrate nonlocality?
If nonlocality is to be inferred from a violation of Bell's inequality, an
important assumption is that the measurement settings are freely chosen by the
observers, or alternatively, that they are random and uncorrelated with the
hypothetical local variables. We study the case where this assumption is
weakened, so that measurement settings and local variables are at least
partially correlated. As we show, there is a connection between this type of
model and models which reproduce nonlocal correlations by allowing classical
communication between the distant parties, and a connection with models that
exploit the detection loophole. We show that even if Bob's choices are
completely independent, all correlations obtained from projective measurements
on a singlet can be reproduced, with the correlation (measured by mutual
information) between Alice's choice and local variables less than or equal to a
single bit.Comment: 5 pages, 1 figure. v2 Various improvements in presentation. Results
unchange
Recovering short generators of principal ideals in cyclotomic rings
Abstract: A handful of recent cryptographic proposals rely on the conjectured hardness of the following problem in the ring of integers of a cyclotomic number field: given a basis of a principal ideal that is guaranteed to have a ``rather short'' generator, find such a generator. Recently, Bernstein and Campbell-Groves-Shepherd sketched potential attacks against this problem; most notably, the latter authors claimed a \emph{polynomial-time quantum} algorithm. (Alternatively, replacing the quantum component with an algorithm of Biasse and Fieker would yield a \emph{classical subexponential-time} algorithm.) A key claim of Campbell \etal\ is that one step of their algorithm---namely, decoding the \emph{log-unit} lattice of the ring to recover a short generator from an arbitrary one---is classically efficient (whereas the standard approach on general lattices takes exponential time). However, very few convincing details were provided to substantiate this claim.
In this work, we clarify the situation by giving a rigorous proof that the log-unit lattice is indeed efficiently decodable, for any cyclotomic of prime-power index. Combining this with the quantum algorithm from a recent work of Biasse and Song confirms the main claim of Campbell \etal\xspace Our proof consists of two main technical contributions: the first is a geometrical analysis, using tools from analytic number theory, of the standard generators of the group of cyclotomic units. The second shows that for a wide class of typical distributions of the short generator, a standard lattice-decoding algorithm can recover it, given any generator.
By extending our geometrical analysis, as a second main contribution we obtain an efficient algorithm that, given any generator of a principal ideal (in a prime-power cyclotomic), finds a 2^O~(n^1/2)
-approximate shortest vector in the ideal. Combining this with the result of Biasse and Song yields a quantum polynomial-time algorithm for the 2^O~(n^1/2)-approximate Shortest Vector Problem on principal ideal lattices
Process algebra modelling styles for biomolecular processes
We investigate how biomolecular processes are modelled in process algebras, focussing on chemical reactions. We consider various modelling styles and how design decisions made in the definition of the process algebra have an impact on how a modelling style can be applied. Our goal is to highlight the often implicit choices that modellers make in choosing a formalism, and illustrate, through the use of examples, how this can affect expressability as well as the type and complexity of the analysis that can be performed
The Effective Temperature in Elasto-Plasticity of Amorphous Solids
An effective temperature which differs from the bath
temperature is believed to play an essential role in the theory of
elasto-plasticity of amorphous solids. The definition of a measurable in the literature on sheared solids suffers however from being connected
to a fluctuation-dissipation theorem which is correct only in equilibrium. Here
we introduce a natural definition of based on measurable
structural features without recourse to any questionable assumption. The value
of is connected, using theory and scaling concepts, to the flow
stress and the mean energy that characterize the elasto-plastic flow.Comment: 4 pages, 5 figure
Narrative-based computational modelling of the Gp130/JAK/STAT signalling pathway.
BACKGROUND: Appropriately formulated quantitative computational models can support researchers in understanding the dynamic behaviour of biological pathways and support hypothesis formulation and selection by "in silico" experimentation. An obstacle to widespread adoption of this approach is the requirement to formulate a biological pathway as machine executable computer code. We have recently proposed a novel, biologically intuitive, narrative-style modelling language for biologists to formulate the pathway which is then automatically translated into an executable format and is, thus, usable for analysis via existing simulation techniques. RESULTS: Here we use a high-level narrative language in designing a computational model of the gp130/JAK/STAT signalling pathway and show that the model reproduces the dynamic behaviour of the pathway derived by biological observation. We then "experiment" on the model by simulation and sensitivity analysis to define those parameters which dominate the dynamic behaviour of the pathway. The model predicts that nuclear compartmentalisation and phosphorylation status of STAT are key determinants of the pathway and that alternative mechanisms of signal attenuation exert their influence on different timescales. CONCLUSION: The described narrative model of the gp130/JAK/STAT pathway represents an interesting case study showing how, by using this approach, researchers can model biological systems without explicitly dealing with formal notations and mathematical expressions (typically used for biochemical modelling), nevertheless being able to obtain simulation and analysis results. We present the model and the sensitivity analysis results we have obtained, that allow us to identify the parameters which are most sensitive to perturbations. The results, which are shown to be in agreement with existing mathematical models of the gp130/JAK/STAT pathway, serve us as a form of validation of the model and of the approach itself
Atomic Disorder in Fossil Tooth and Bone Mineral: An FTIR Study Using the Grinding Curve Method
Bone and tooth mineral generally undergo diagenetic changes. These changes in the carbonate hydroxyapatite structure and composition can affect the signals embedded in the mineral phase, such as migration behavior, age of the specimen and the reconstruction of past environments. Mineral preservation state can be assessed using infrared spectroscopy which provides information on crystal disorder at the atomic level and mineral composition. Here we present a new approach to evaluate carbonate hydroxyapatite atomic disorder using infrared spectroscopy and the standard KBr sample mounting method. We show that by repeated grinding of the sample and then plotting the infrared splitting factor against the width of the major phosphate absorption peak after each grinding, grinding curves with well defined trend lines can be obtained. The offsets between curves reflect differences in atomic disorder. We show that grinding curve offsets can be used to evaluate the state of preservation of bone, dentine and enamel mineral.Les os et les dents subissent généralement des changements diagénétiques. Ces changements de la structure et de la composition de l’hydroxyapatite carbonatée peuvent affecter les signaux inclus dans la phase minérale, tels que les comportements de migration, l’âge des spécimens ou la reconstitution des environnements passés. L’état de préservation de la phase minérale peut être déterminé par la spectrométrie infrarouge qui fournit des informations sur le désordre structural et sur la composition du minéral. Dans cette étude, nous présentons une nouvelle approche permettant d’évaluer le désordre cristallin en utilisant la spectrométrie infrarouge. Nous montrons ici qu’un broyage répété de l’échantillon et la représentation graphique des valeurs de splitting factor et de la largeur à mi-hauteur de la principale bande d’absorption des phosphates après chaque broyage, peut permettre de définir des courbes de broyage avec des tendances bien définies. Un décalage entre ces courbes reflète des différences de désorganisation à l’échelle atomique
Recommended from our members
Identification of MS-specific serum miRNAs in an international multicenter study.
ObjectiveTo identify circulating microRNAs (miRNAs) linked to disease, disease stage, and disability in MS across cohorts.MethodsSamples were obtained from the Comprehensive Longitudinal Investigation of Multiple Sclerosis (CLIMB, Boston, MA), EPIC (San Francisco, CA), AMIR (Beirut, Lebanon) as part of the SUMMIT consortium, and Stockholm Prospective Assessment of Multiple Sclerosis (Stockholm, Sweden) cohorts. Serum miRNA expression was measured using locked nucleic acid-based quantitative PCR. Four groups were compared: (1) MS vs healthy control (HC), (2) relapsing-remitting (RR) vs HC, (3) secondary progressive (SP) vs HC, and (4) RR vs SP. A Wilcoxon rank-sum test was used for the comparisons. The association between each miRNA and the Expanded Disability Status Scale (EDSS) score was assessed using the Spearman correlation coefficient. For each comparison, the p values were corrected for multiple comparisons using the approach of Benjamini and Hochberg to control the false discovery rate.ResultsIn the CLIMB cohort, 5 miRNAs (hsa-miR-484, hsa-miR-140-5p, hsa-miR-320a, hsa-miR-486-5p, and hsa-miR-320c) showed a significant difference between patients with MS and healthy individuals; among these, miR-484 remained significant after accounting for multiple comparisons (p = 0.01). When comparing RRMS with HCs, hsa-miR-484 showed a significant difference (p = 0.004) between the groups after accounting for multiple group comparisons. When SP and HC were compared, 6 miRNAs (hsa-miR-484, hsa-miR-140-5p, hsa-miR-142-5p, hsa-miR-320a, hsa-miR-320b, and hsa-miR-320c) remained significantly different after accounting for multiple comparisons. Disability correlation analysis with miRNA provided 4 miRNAs (hsa-miR-320a, hsa-miR-337-3p, hsa-miR-199a-5p, and hsa-miR-142-5p) that correlated with the EDSS during the internal reproducibility phase. Among these, hsa-miR-337-3p was the most statistically significant miRNA that negatively correlated with the EDSS in three of the MS cohorts tested.ConclusionsThese findings further confirm the use of circulating serum miRNAs as biomarkers to diagnose and monitor disease status in MS.Classification of evidenceThis study provides Class III evidence that levels of circulating miRNAs identify patients with MS
Provably weak instances of ring-LWE revisited
In CRYPTO 2015, Elias, Lauter, Ozman and Stange described an attack on the non-dual decision version of the ring learning with errors problem (RLWE) for two special families of defining polynomials, whose construction depends on the modulus q that is being used. For particularly chosen error parameters, they managed to solve non-dual decision RLWE given 20 samples, with a success rate ranging from 10% to 80%. In this paper we show how to solve the search version for the same families and error parameters, using only 7 samples with a success rate of 100%. Moreover our attack works for every modulus q instead of the q that was used to construct the defining polynomial. The attack is based on the observation that the RLWE error distribution for these families of polynomials is very skewed in the directions of the polynomial basis. For the parameters chosen by Elias et al. the smallest errors are negligible and simple linear algebra suffices to recover the secret. But enlarging the error paremeters makes the largest errors wrap around, thereby turning the RLWE problem unsuitable for cryptographic applications. These observations also apply to dual RLWE, but do not contradict the seminal work by Lyubashevsky, Peikert and Regev
- …