2,396 research outputs found
Interface-Induced Plasmon Nonhomogeneity in Nanostructured Metal-Dielectric Planar Metamaterial
Transformations of the electronic structure in thin silver layers in metal-dielectric (TiAlN/Ag) multilayer nanocomposite were investigated by a set of electron spectroscopy techniques. Localization of the electronic states in the valence band and reduction of electron concentration in the conduction band was observed. This led to decreasing metallic properties of silver in the thin films. A critical layer thickness of 23.5 nm associated with the development of quantum effects was determined by X-ray photoelectron spectroscopy. Scanning Auger electron microscopy of characteristic energy losses provided images of plasmon localization in the Ag layers. The nonuniformity of plasmon intensities distribution near the metal-nitride interfaces was assessed experimentally
W4 theory for computational thermochemistry: in pursuit of confident sub-kJ/mol predictions
In an attempt to improve on our earlier W3 theory [J. Chem. Phys. {\bf 120},
4129 (2004)] we consider such refinements as more accurate estimates for the
contribution of connected quadruple excitations (), inclusion of
connected quintuple excitations (), diagonal Born-Oppenheimer
corrections (DBOC), and improved basis set extrapolation procedures. Revised
experimental data for validation purposes were obtained from the latest version
of the ATcT (Active Thermochemical Tables) Thermochemical Network. We found
that the CCSDTQCCSDT(Q) difference converges quite rapidly with the basis
set, and that the formula
1.10[CCSDT(Q)/cc-pVTZ+CCSDTQ/cc-pVDZCCSDT(Q)/cc-pVDZ] offers a very reliable
as well as fairly cost-effective estimate of the basis set limit
contribution. The largest contribution found in the present work is
on the order of 0.5 kcal/mol (for ozone). DBOC corrections are significant at
the 0.1 kcal/mol level in hydride systems. . Based on the accumulated
experience, a new computational thermochemistry protocol for first-and
second-row main-group systems, to be known as W4 theory, is proposed. Our W4
atomization energies for a number of key species are in excellent agreement
(better than 0.1 kcal/mol on average, 95% confidence intervals narrower than 1
kJ/mol) with the latest experimental data obtained from Active Thermochemical
Tables. A simple {\em a priori} estimate for the importance of post-CCSD(T)
correlation contributions (and hence a pessimistic estimate for the error in a
W2-type calculation) is proposed.Comment: J. Chem. Phys., in press; electronic supporting information available
at http://theochem.weizmann.ac.il/web/papers/w4.htm
Demonstration of the difference Casimir force for samples with different charge carrier densities
A measurement of the Casimir force between a gold coated sphere and two Si
plates of different carrier densities is performed using a high vacuum based
atomic force microscope. The results are compared with the Lifshitz theory and
good agreement is found. Our experiment demonstrates that by changing the
carrier density of the semiconductor plate by several orders of magnitude it is
possible to modify the Casimir interaction. This result may find applications
in nanotechnology.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Plasma Catalytic Reforming of Natural Gas
In this paper, recent results of plasma processing of natural gas are described. The use of a plasma reformer for the generation of hydrogen rich gas from natural gas has been investigated. In an accompanying paper, progress in plasma reforming of diesel fuel is described. The reformate composition has been investigated as a function of the initial mixture of air and methane. High methane conversion, near 100%, was obtained at relatively low values of plasmatron power. Soon-to-be-implements improvements in the overall reformer, including multiple heat exchanger for efficient thermal management and multiple water shift reactors, are described. 1
Plasma Reforming of Diesel Fuel
The use of a plasma reformer for the generation of hydrogen rich gas from diesel fuel has been investigated. A system that is normally used for investigating natural gas reforming has been modified in order to investigate the reforming of heavy liquid fuels. The composition of the reformate has been investigated as a function of the composition of the reagents. The use of a one-step reformer/water shifter was studied. Good reforming, with no noticeable soot production, was obtained. The specific energy consumption was equal to that previously obtained with methane reforming, with much reduced concentration of methane in the reformate. 1. Introduction. Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels [1-3]. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The hig
Nonlinear dynamics in one dimension: On a criterion for coarsening and its temporal law
We develop a general criterion about coarsening for a class of nonlinear
evolution equations describing one dimensional pattern-forming systems. This
criterion allows one to discriminate between the situation where a coarsening
process takes place and the one where the wavelength is fixed in the course of
time. An intermediate scenario may occur, namely `interrupted coarsening'. The
power of the criterion lies in the fact that the statement about the occurrence
of coarsening, or selection of a length scale, can be made by only inspecting
the behavior of the branch of steady state periodic solutions. The criterion
states that coarsening occurs if lambda'(A)>0 while a length scale selection
prevails if lambda'(A)<0, where is the wavelength of the pattern and A
is the amplitude of the profile. This criterion is established thanks to the
analysis of the phase diffusion equation of the pattern. We connect the phase
diffusion coefficient D(lambda) (which carries a kinetic information) to
lambda'(A), which refers to a pure steady state property. The relationship
between kinetics and the behavior of the branch of steady state solutions is
established fully analytically for several classes of equations. Another
important and new result which emerges here is that the exploitation of the
phase diffusion coefficient enables us to determine in a rather straightforward
manner the dynamical coarsening exponent. Our calculation, based on the idea
that |D(lambda)|=lambda^2/t, is exemplified on several nonlinear equations,
showing that the exact exponent is captured. Some speculations about the
extension of the present results to higher dimension are outlined.Comment: 16 pages. Only a few minor changes. Accepted for publication in
Physical Review
- …