19 research outputs found
Influence of the Hydrodynamic Environment on Quorum Sensing in Pseudomonas aeruginosa Biofilmsâ–ż â€
We provide experimental and modeling evidence that the hydrodynamic environment can impact quorum sensing (QS) in a Pseudomonas aeruginosa biofilm. The amount of biofilm biomass required for full QS induction of the population increased as the flow rate increased
The Effect of Spaceflight on Growth of Ulocladium chartarum Colonies on the International Space Station
The objectives of this 14 days experiment were to investigate the effect of spaceflight on the growth of Ulocladium chartarum, to study the viability of the aerial and submerged mycelium and to put in evidence changes at the cellular level. U. chartarum was chosen for the spaceflight experiment because it is well known to be involved in biodeterioration of organic and inorganic substrates covered with organic deposits and expected to be a possible contaminant in Spaceships. Colonies grown on the International Space Station (ISS) and on Earth were analysed post-flight. This study clearly indicates that U. chartarum is able to grow under spaceflight conditions developing, as a response, a complex colony morphotype never mentioned previously. We observed that spaceflight reduced the rate of growth of aerial mycelium, but stimulated the growth of submerged mycelium and of new microcolonies. In Spaceships and Space Stations U. chartarum and other fungal species could find a favourable environment to grow invasively unnoticed in the depth of surfaces containing very small amount of substrate, posing a risk factor for biodegradation of structural components, as well as a direct threat for crew health. The colony growth cycle of U. chartarum provides a useful eukaryotic system for the study of fungal growth under spaceflight conditions
The biofilm life cycle and virulence of pseudomonas aeruginosa are dependent on a filamentous prophage
Mature Pseudomonas aeruginosa biofilms undergo specific developmental events. Using a bacteriophage mutant, generated by deletion of the entire filamentous Pf4 prophage, we show that the phage is essential for several stages of the biofilm life cycle and that it significantly contributes to the virulence of P. aeruginosa in vivo. Here, we show for the first time that biofilms of the Pf4 phage-deficient mutant did not develop hollow centres or undergo cell death, typical of the differentiation process of wild-type (WT) P. aeruginosa PAO1 biofilms. Furthermore, microcolonies of the Pf4 mutant were significantly smaller in size and less stable compared with the WT biofilm. Small colony variants (SCVs) were detectable in the dispersal population of the WT biofilm at the time of dispersal and cell death, whereas no SCVs were detected in the effluent of the Pf4 mutant biofilm. This study shows that at the time when cell death occurs in biofilms of the WT, the Pf4 phage converts into a superinfective form, which correlates with the appearance of variants in the dispersal population. Unexpectedly, mice infected with the Pf4 mutant survived significantly longer than those infected with its isogenic WT strain, showing that Pf4 contributes to the virulence of P. aeruginosa. Hence, a filamentous prophage is a major contributor to the life cycle and adaptive behaviour of P. aeruginosa and offers an explanation for the prevalence of phage in this organism