16 research outputs found

    Hyper-entanglement between pulse modes and frequency bins

    Full text link
    Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols by allowing each DOF to perform the task it is optimally suited for. Here we demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins. The pulse modes are generated via parametric downconversion in a domain-engineered crystal and subsequently entangled to two frequency bins via a spectral mapping technique. The resulting hyper-entangled state is characterized and verified via measurement of its joint spectral intensity and non-classical two-photon interference patterns from which we infer its spectral phase. The protocol combines the robustness to loss, intrinsic high dimensionality and compatibility with standard fiber-optic networks of the energy-time DOF with the ability of hyper-entanglement to increase the capacity and efficiency of the quantum channel, already exploited in recent experimental applications in both quantum information and quantum computation

    Quantum communication complexity beyond Bell nonlocality

    Full text link
    Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks such as parallel computation and circuit optimisation. Crucially, the communication overhead introduced by the allotment process should be minimised -- a key motivation behind the communication complexity problem (CCP). Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts. Furthermore, the connection between quantum CCPs and nonlocality provides an information-theoretic insights into fundamental quantum mechanics. Here we connect quantum CCPs with a generalised nonlocality framework -- beyond the paradigmatic Bell's theorem -- by incorporating the underlying causal structure, which governs the distributed task, into a so-called nonlocal hidden variable model. We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities, whose violation is both necessary and sufficient for a quantum gain. We experimentally implement a multipartite CCP akin to the guess-your-neighbour-input scenario, and demonstrate a quantum advantage when multipartite Greenberger-Horne-Zeilinger (GHZ) states are shared among three users.Comment: 21 pages, 5 figure

    Frequency-bin entanglement from domain-engineered down-conversion

    No full text
    Frequency encoding is quickly becoming an attractive prospect for quantum information protocols owing to larger Hilbert spaces and increased resilience to noise compared to other photonic degrees of freedom. To fully make use of frequency encoding as a practical paradigm for QIP, an efficient and simple source of frequency entanglement is required. Here we present a single-pass source of discrete frequency-bin entanglement which does not use filtering or a resonant cavity. We use a domain-engineered nonlinear crystal to generate an eight-mode frequency-bin entangled source at telecommunication wavelengths. Our approach leverages the high heralding efficient and simplicity associated with bulk crystal sources.Comment: 6 pages, 4 figure

    Optimised domain-engineered crystals for pure telecom photon sources

    No full text
    The ideal photon-pair source for building up multi-qubit states needs to produce indistinguishable photons with high efficiency. Indistinguishability is crucial for minimising errors in two-photon interference, central to building larger states, while high heralding rates will be needed to overcome unfavourable loss scaling. Domain engineering in parametric down-conversion sources negates the need for lossy spectral filtering allowing one to satisfy these conditions inherently within the source design. Here, we present a telecom-wavelength parametric down-conversion photon source that operates on the achievable limit of domain engineering. We generate photons from independent sources which achieve two-photon interference visibilities of up to 98.6±1.1%98.6\pm1.1\% without narrow-band filtering. As a consequence, we reach net heralding efficiencies of up to 67.5%67.5\%, which corresponds to collection efficiencies exceeding 90%90\%.Comment: 6 pages, 5 figures, 1 page of supplementar

    Conference key agreement in a quantum network

    No full text
    Abstract Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state. In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit, whereas up to N-1 entanglement pairs are consumed in the traditional pair-wise protocol. We demonstrate the advantage provided by GHZ states in a testbed consisting of a photonic six-user quantum network, where four users can distil either a GHZ state or the required number of Bell pairs for QCKA using network routing techniques. In the asymptotic limit, we report a more than two-fold enhancement of the conference key rate when comparing the two protocols. We extrapolate our data set to show that the resource advantage for the GHZ protocol persists when taking into account finite-key effects

    Experimental network advantage for quantum conference key agreement

    Full text link
    One of the great promises of quantum technology is the development of quantum networks, which will allow global distribution of entanglement for tasks such as distributed quantum computing, distributed quantum sensing and quantum-secure communication. To leverage the full potential of quantum networks we require protocols that draw an efficiency advantage from genuine multi-partite entanglement as opposed to strictly pair-wise correlations such as Bell states. Multi-user entanglement such as Greenberger-Horne-Zeilinger (GHZ) states have already found application in quantum conference key agreement, quantum secret sharing and quantum communication complexity problems. However, a true network advantage has not yet been achieved. In this work we create a six-photon graph-state network from which we derive either a four-user GHZ state for direct quantum conference key agreement or the required amount of Bell pairs for the equivalent pair-wise protocol. We show that the GHZ-state protocol has a more than two-fold rate advantage by only consuming half the amount of network resources per secure conference key bit

    Entanglement-based quantum communication complexity beyond Bell nonlocality

    No full text
    Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks such as parallel computation and circuit optimisation. Crucially, the communication overhead introduced by the allotment process should be minimised -- a key motivation behind the communication complexity problem (CCP). Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts. Furthermore, the connection between quantum CCPs and nonlocality provides an information-theoretic insights into fundamental quantum mechanics. Here we connect quantum CCPs with a generalised nonlocality framework -- beyond the paradigmatic Bell's theorem -- by incorporating the underlying causal structure, which governs the distributed task, into a so-called nonlocal hidden variable model. We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities, whose violation is both necessary and sufficient for a quantum gain. We experimentally implement a multipartite CCP akin to the guess-your-neighbour-input scenario, and demonstrate a quantum advantage when multipartite Greenberger-Horne-Zeilinger (GHZ) states are shared among three users.Comment: 21 pages, 5 figure
    corecore