41 research outputs found
Establishment and Propagation of Human Retinoblastoma Tumors in Immune Deficient Mice
Culturing retinoblastoma tumor cells in defined stem cell media gives rise to primary tumorspheres that can be grown and maintained for only a limited time. These cultured tumorspheres may exhibit markedly different cellular phenotypes when compared to the original tumors. Demonstration that cultured cells have the capability of forming new tumors is important to ensure that cultured cells model the biology of the original tumor
Medulloblastoma outcome is adversely associated with overexpression of EEF1D, RPL30, and RPS20 on the long arm of chromosome 8
BACKGROUND: Medulloblastoma is the most common malignant brain tumor of childhood. Improvements in clinical outcome require a better understanding of the genetic alterations to identify clinically significant biological factors and to stratify patients accordingly. In the present study, we applied cytogenetic characterization to guide the identification of biologically significant genes from gene expression microarray profiles of medulloblastoma. METHODS: We analyzed 71 primary medulloblastomas for chromosomal copy number aberrations (CNAs) using comparative genomic hybridization (CGH). Among 64 tumors that we previously analyzed by gene expression microarrays, 27 were included in our CGH series. We analyzed clinical outcome with respect to CNAs and microarray results. We filtered microarray data using specific CNAs to detect differentially expressed candidate genes associated with survival. RESULTS: The most frequent lesions detected in our series involved chromosome 17; loss of 16q, 10q, or 8p; and gain of 7q or 2p. Recurrent amplifications at 2p23-p24, 2q14, 7q34, and 12p13 were also observed. Gain of 8q is associated with worse overall survival (p = 0.0141), which is not entirely attributable to MYC amplification or overexpression. By applying CGH results to gene expression analysis of medulloblastoma, we identified three 8q-mapped genes that are associated with overall survival in the larger group of 64 patients (p < 0.05): eukaryotic translation elongation factor 1D (EEF1D), ribosomal protein L30 (RPL30), and ribosomal protein S20 (RPS20). CONCLUSION: The complementary use of CGH and expression profiles can facilitate the identification of clinically significant candidate genes involved in medulloblastoma growth. We demonstrate that gain of 8q and expression levels of three 8q-mapped candidate genes (EEF1D, RPL30, RPS20) are associated with adverse outcome in medulloblastoma
Overexpressed TP73 induces apoptosis in medulloblastoma
Abstract
Background
Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth.
Methods
We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods.
Results
Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and sensitized them to cell death in response to chemotherapeutic agents.
Conclusion
These results indicate that primary medulloblastomas express significant levels of TP73 isoforms, and suggest that they can modulate the survival and genotoxic responsiveness of medulloblastomas cells
Tumorspheres but not adherent cells derived from retinoblastoma tumors are of malignant origin.
Verification that cell lines used for cancer research are derived from malignant cells in primary tumors is imperative to avoid invalidation of study results. Retinoblastoma is a childhood ocular tumor that develops from loss of functional retinoblastoma protein (pRb) as a result of genetic or epigenetic changes that affect both alleles of the RB1 gene. These patients contain unique identifiable genetic signatures specifically present in malignant cells. Primary cultures derived from retinoblastoma tumors can be established as non-adherent tumorspheres when grown in defined media or as attached monolayers when grown in serum-containing media. While the RB1 genotypes of tumorspheres match those of the primary tumor, adherent cultures have the germline RB1 genotype. Tumorspheres derived from pRb-negative tumors do not express pRb and express the neuroendocrine tumor markers synaptophysin and microtubule-associated protein 2 (MAP2). Adherent cells are synaptophysin-negative and express pRb, the epithelial cell marker cytokeratin that is expressed in the retinal pigmented epithelium and the vascular endothelial cell marker CD34. While tumorspheres are of malignant origin, our results cast doubt on the assumption that adherent tumor-derived cultures are always valid in vitro models of malignant cells and emphasize the need for validation of primary tumor cultures