16 research outputs found

    Endothelin-receptor antagonists are proapoptotic and antiproliferative in human colon cancer cells

    Get PDF
    Endothelin (ET)-1 can act as an autocrine/paracrine growth factor or an antiapoptotic factor in human cancers. To study the role of ET-1 in human colon cancer, proliferation and apoptosis of colon carcinoma cells was investigated using human HT-29 and SW480 colon carcinoma cells. ET-1 was secreted by these cells. Treatment of cells with bosentan, a dual ET(A/B)-receptor antagonist, decreased cell number. Inhibition of DNA synthesis by bosentan was observed only in the presence of serum. Exogenously added ET-1 did not increase DNA synthesis in serum-deprived cells. SW480 cells were sensitive and HT-29 cells were resistant to FasL-induced apoptosis. Bosentan sensitised resistant HT-29 cells to FasL-induced, caspase-mediated apoptosis, but not to TNF-alpha-induced apoptosis. Bosentan and/or FasLigand (FasL) did not modulate the expression of caspase-8 or FLIP. Bosentan sensitisation to apoptosis was reversed by low concentrations (10(-13)-10(-10) M), but not by high concentrations (10(-9)-10(-7) M) of ET-1. These results suggest that the binding of ET-1 to high-affinity sites inhibits FasL-induced apoptosis, while the binding of either ET-1 or receptor antagonists to low-affinity sites promotes FasL-induced apoptosis. In conclusion, endothelin signalling pathways do not induce human colon cancer cell proliferation, but are survival signals controling resistance to apoptosis

    Evaluation of the interaction between TGF beta and nitric oxide in the mechanisms of progression of colon carcinoma

    Get PDF
    It is recognised that stromal cells determine cancer progression. We have previously shown that active TGFbeta produced by rat colon carcinoma cells modulated NO production in rat endothelial cells. To elucidate the role of TGFbeta and NO in the mechanisms of interaction of colon carcinoma cells with stromal cells and in cancer progression, we transfected REGb cells, a regressive colon carcinoma clone secreting latent TGFbeta, with a cDNA encoding for a constitutively-secreted active TGFbeta. Out of 20 injected rats only one tumour progressed, which was resected and sub-cultured (ReBeta cells). ReBeta cells secreted high levels of active TGFbeta. The adhesive properties of REGb and Rebeta cells to endothelial cells were similar, showing that the secretion of active TGFbeta is not involved in tumour cell adhesion to endothelial cells. ReBeta, but not REGb, cell culture supernatants inhibited cytokine-dependent NO secretion by endothelial cells, but inhibition of NO production was similar in co-cultures of REGb or ReBeta cells with endothelial cells. Therefore, secretion of active TGFbeta regulated endothelial NO synthase activity when tumour cells were distant from, but not in direct contact with, endothelial cells. However, only ReBeta cells inhibited cytokine-dependent secretion of NO in coculture with macrophages, indicating that the active-TGFbeta-NO axis confers an advantage for tumour cells in their interaction with macrophages rather than endothelial cells in cancer progression

    Renin and angiotensinogen expression and functions in growth and apoptosis of human glioblastoma

    Get PDF
    The expression and function in growth and apoptosis of the renin-angiotensin system (RAS) was evaluated in human glioblastoma. Renin and angiotensinogen (AGT) mRNAs and proteins were found by in situ hybridisation and immunohistochemistry in glioblastoma cells. Angiotensinogen was present in glioblastoma cystic fluids. Thus, human glioblastoma cells produce renin and AGT and secrete AGT. Human glioblastoma and glioblastoma cells expressed renin, AGT, renin receptor, AT(2) and/or AT(1) mRNAs and proteins determined by RT-PCR and/or Western blotting, respectively. The function of the RAS in glioblastoma was studied using human glioblastoma cells in culture. Angiotensinogen, des(Ang I)AGT, tetradecapaptide renin substrate (AGT1-14), Ang I, Ang II or Ang III, added to glioblastoma cells in culture, did not modulate their proliferation, survival or death. Angiotensin-converting enzyme inhibitors did not diminish glioblastoma cell proliferation. However, the addition of selective synthetic renin inhibitors to glioblastoma cells decreased DNA synthesis and viable tumour cell number, and induced apoptosis. This effect was not counterbalanced by concomitant addition of Ang II. In conclusion, the complete RAS is expressed by human glioblastomas and glioblastoma cells in culture. Inhibition of renin in glioblastoma cells may be a potential approach to control glioblastoma cell proliferation and survival, and glioblastoma progression in combination therapy

    Fas and Fas ligand expression in tumor cells and in vascular smooth-muscle cells of colonic and renal carcinomas

    No full text
    CD95/APO-1 ligand (FasL) is implicated in the maintenance of immune privileged sites by inducing apoptosis of activated infiltrating T lymphocytes. Therefore, progressive tumors might express high levels of FasL and develop as immune privileged sites. In this study, we investigated the expression of FasL and CD95/APO-1 (Fas, the FasL-receptor) in vitro in rat adenocarcinoma cell lines and the localization in situ in normal human kidney and colon and in their adenocarcinomas. The rat cell line PROb (a progressive tumor in vivo) expressed a higher level of FasL than the sister cell line REGb (a regressive tumor in vivo), as detected by flow cytometry. The 2 cell lines expressed the same level of Fas, but were resistant to FasL-induced apoptosis. In human tissue, both kidney and colon extracts expressed FasL by Western blot. Further investigations, using immunohistochemical staining of paraffin sections, showed that normal colon mucosa expressed Fas and FasL in crypt epithelial cells in the subnuclear compartment. Normal kidney showed Fas and FasL labeling mostly restricted to epithelial cells of proximal tubules and Henle's loop, showing that this expression is not uniform throughout the organ. Smooth-muscle cells of muscularis propria and blood vessels in and around the tumors were also intensely but more uniformly labeled. In colon-cancer cells, FasL expression remained strong, whereas Fas expression was significantly reduced. A similar reduction in Fas expression was noted in renal-cancer cells. Tumor-infiltrating immune cells of the macrophage lineage do not express FasL. Our results show that smooth-muscle cells of muscularis propria and blood vessels are able to express FasL and to a slight extent Fas. In normal epithelial cells of colon and kidney, Fas and FasL are often co-expressed. The reduced expression of Fas in corresponding cancer cells in combination with the ability to express FasL might facilitate immune escape

    Characterization of the thymic IL-7 niche in vivo.

    No full text
    International audienceThe thymus represents the "cradle" for T cell development, with thymic stroma providing multiple soluble and membrane cues to developing thymocytes. Although IL-7 is recognized as an essential factor for thymopoiesis, the "environmental niche" of thymic IL-7 activity remains poorly characterized in vivo. Using bacterial artificial chromosome transgenic mice in which YFP is under control of IL-7 promoter, we identify a subset of thymic epithelial cells (TECs) that co-express YFP and high levels of Il7 transcripts (IL-7(hi) cells). IL-7(hi) TECs arise during early fetal development, persist throughout life, and co-express homeostatic chemokines (Ccl19, Ccl25, Cxcl12) and cytokines (Il15) that are critical for normal thymopoiesis. In the adult thymus, IL-7(hi) cells localize to the cortico-medullary junction and display traits of both cortical and medullary TECs. Interestingly, the frequency of IL-7(hi) cells decreases with age, suggesting a mechanism for the age-related thymic involution that is associated with declining IL-7 levels. Our temporal-spatial analysis of IL-7-producing cells in the thymus in vivo suggests that thymic IL-7 levels are dynamically regulated under distinct physiological conditions. This IL-7 reporter mouse provides a valuable tool to further dissect the mechanisms that govern thymic IL-7 expression in vivo

    Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury.

    No full text
    International audienceProfibrotic cells that develop upon injury generate permanent scar tissue and impair organ recovery, though their origin and fate are unclear. Here we show that transient expression of ADAM12 (a disintegrin and metalloprotease 12) identifies a distinct proinflammatory subset of platelet-derived growth factor receptor-α-positive stromal cells that are activated upon acute injury in the muscle and dermis. By inducible genetic fate mapping, we demonstrate in vivo that injury-induced ADAM12(+) cells are specific progenitors of a major fraction of collagen-overproducing cells generated during scarring, which are progressively eliminated during healing. Genetic ablation of ADAM12(+) cells, or knockdown of ADAM12, is sufficient to limit generation of profibrotic cells and interstitial collagen accumulation. ADAM12(+) cells induced upon injury are developmentally distinct from muscle and skin lineage cells and are derived from fetal ADAM12(+) cells programmed during vascular wall development. Thus, our data identify injury-activated profibrotic progenitors residing in the perivascular space that can be targeted through ADAM12 to limit tissue scarring
    corecore