204 research outputs found
Domain wall suppression in trapped mixtures of Bose-Einstein condensates
The ground state energy of a binary mixture of Bose-Einstein condensates can
be estimated for large atomic samples by making use of suitably regularized
Thomas-Fermi density profiles. By exploiting a variational method on the trial
densities the energy can be computed by explicitly taking into account the
normalization condition. This yields analytical results and provides the basis
for further improvement of the approximation. As a case study, we consider a
binary mixture of Rb atoms in two different hyperfine states in a double
well potential and discuss the energy crossing between density profiles with
different numbers of domain walls, as the number of particles and the
inter-species interaction vary.Comment: 9 page
Quantum Zeno effect in a probed downconversion process
The distorsion of a spontaneous downconvertion process caused by an auxiliary
mode coupled to the idler wave is analyzed. In general, a strong coupling with
the auxiliary mode tends to hinder the downconversion in the nonlinear medium.
On the other hand, provided that the evolution is disturbed by the presence of
a phase mismatch, the coupling may increase the speed of downconversion. These
effects are interpreted as being manifestations of quantum Zeno or anti-Zeno
effects, respectively, and they are understood by using the dressed modes
picture of the device. The possibility of using the coupling as a nontrivial
phase--matching technique is pointed out.Comment: 11 pages, 4 figure
Binary mixtures of condensates in generic confining potentials
We study a binary mixture of Bose-Einstein condensates, confined in a generic
potential, in the Thomas-Fermi approximation. We search for the
zero-temperature ground state of the system, both in the case of fixed numbers
of particles and fixed chemical potentials.Comment: 20 pages, 2 figure
Lateral Effects in Fermion Antibunching
Lateral effects are analyzed in the antibunching of a beam of free
non-interacting fermions. The emission of particles from a source is
dynamically described in a 3D full quantum field-theoretical framework. The
size of the source and the detectors, as well as the temperature of the source
are taken into account and the behavior of the visibility is scrutinized as a
function of these parameters.Comment: 22 pages, 4 figure
Further evidence of antibunching of two coherent beams of fermions
We describe an experiment confirming the evidence of the antibunching effect
on a beam of non interacting thermal neutrons. The comparison between the
results recorded with a high energy-resolution source of neutrons and those
recorded with a broad energy-resolution source enables us to clarify the role
played by the beam coherence in the occurrence of the antibunching effect.Comment: 4 pages, 3 figure
Recommended from our members
Exploring the internal structure of soot particles using nanoindentation: A reactive molecular dynamics study
The mechanical properties and internal structure of soot nanoparticles is investigated using reactive molecular dynamics simulations of nanoindentation of model soot particles. The particles that are provided as inputs to the simulations are generated using reactive molecular dynamics to create 3D networks of crosslinked coronene, circumanthracene and core-shell mixtures of coronene and circumanthracene. The results of the simulated nanoindentation experiments are analysed as a function of the degree of crosslinking (defined as the number of crosslinks per monomer in the particles), the size and the core-shell structure of the particles. In the case of homogeneous particles (i.e. those without a core-shell structure), the simulations show a unique relationship between the degree of crosslinking (CL) and the simulated hardness, Young’s modulus and deformation ratio. In the case of particles with a core-shell structure, a unique relationship was only found by considering the core-shell ratio and the degree of crosslinking in both the core and the shell. Our results allow for interpretation of the nanoindentation experiments as suggesting crosslinks are present in mature soot particles and preliminary evidence that crosslinks also are present within the interior of soot particles
Direct experimental evidence of free fermion antibunching
Fermion antibunching was observed on a beam of free noninteracting neutrons.
A monochromatic beam of thermal neutrons was first split by a graphite single
crystal, then fed to two detectors, displaying a reduced coincidence rate. The
result is a fermionic complement to the Hanbury Brown and Twiss effect for
photons.Comment: 4 pages, 2 figure
Reflection and Transmission in a Neutron-Spin Test of the Quantum Zeno Effect
The dynamics of a quantum system undergoing frequent "measurements", leading
to the so-called quantum Zeno effect, is examined on the basis of a
neutron-spin experiment recently proposed for its demonstration. When the
spatial degrees of freedom are duely taken into account, neutron-reflection
effects become very important and may lead to an evolution which is totally
different from the ideal case.Comment: 26 pages, 6 figure
- …