57 research outputs found

    The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps

    Get PDF
    This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel radar-based ensemble forecasting chains for flash-flood early warning are investigated in three catchments in the southern Swiss Alps and set in relation to deterministic discharge forecasts for the same catchments. The first radar-based ensemble forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second ensemble forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialised with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. A clear preference was found for the ensemble approach. Discharge forecasts perform better when forced by NORA and REAL-C2 rather then by deterministic weather radar data. Moreover, it was observed that using an ensemble of initial conditions at the forecast initialisation, as in REAL-C2, significantly improved the forecast skill. These forecasts also perform better then forecasts forced by ensemble rainfall forecasts (NORA) initialised form a single initial condition of the hydrological model. Thus the best results were obtained with the REAL-C2 forecasting chain. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation

    Reconstruction and simulation of an extreme flood event in the Lago Maggiore catchment in 1868

    Get PDF
    Heavy precipitation on the south side of the central Alps produced a catastrophic flood in October 1868. We assess the damage and societal impacts, as well as the atmospheric and hydrological drivers using documentary evidence, observations and novel numerical weather and runoff simulations.The greatest damage was concentrated close to the Alpine divide and Lago Maggiore. An atmospheric reanalysis emphasizes the repeated occurrence of streamers of high potential vorticity as precursors of heavy precipitation. Dynamical downscaling indicates high freezing levels (4000&thinsp;m&thinsp;a.s.l.), extreme precipitation rates (max. 270&thinsp;mm&thinsp;24&thinsp;h−1) and weather dynamics that agree well with observed precipitation and damage, and with existing concepts of forced low-level convergence, mid-level uplift and iterative northeastward propagation of convective cells. Simulated and observed peak levels of Lago Maggiore differ by 2&thinsp;m, possibly because the exact cross section of the lake outflow is unknown. The extreme response of Lago Maggiore cannot be attributed to low forest cover. Nevertheless, such a paradigm was adopted by policy makers following the 1868 flood, and used to implement nationwide afforestation policies and hydraulic structures.These findings illustrate the potential of high-resolution, hydrometeorological models – strongly supported by historical methods – to shed new light on weather events and their socio-economic implications in the 19th century.</p

    Spatial variability of soil physical attributes in sugarcane using different row spacings.

    Get PDF
    The aim of this study was to determine the impact of harvesting traffic by evaluating the spatial variability of soil physical attributes on a clayey Oxisol under sugarcane cultivation using different row spacing. Two areas of sugarcane production (RB855156 genotype) were planted in autumn 2013, both using conventional planting systems. Treatments were either sugarcane cultivated using: (i) single-row spacing (SR) of 1.50 m; or (ii) double-row spacing (DR) of 0.40 × 1.50 m. Areas using SR spacing occupied a total of 6 ha areas using DR spacing occupied a total of 2 ha. Assessments of soil physical attributes were performed during the summer of 2016 after the second harvest. Soil measurements in each area were done at 100 points using a grid design with dimensions of 10 m long by 5 m wide. Soil sampling was taken from the 0.00-0.10 m layer, from points distributed along the planted row and the machine?s wheel track. The following soil physical attributes were assessed: bulk density, total porosity, macroporosity, microporosity, soil penetration resistance, and water contentat field capacity. Bd and PR in the single-row spacing showed critical values for adequate sugarcane root development. The highest spatial variability of PR and Ma was found in double-row spacing, however, this spacing arrangement promoted a better soil physical conditions
    corecore