10 research outputs found

    Bark Beetle (Coleoptera: Curculionidae: Scolytinae) Community Structure in Northeastern and Central Minnesota

    Get PDF
    Large-scale surveys of forest insects provide two distinct benefits: the detection of invasive and exotic species that cause millions of dollars of damage annually to forest and ornamental industries, and the addition of a wealth of species distribution and diversity information to the scientific community. We intensively surveyed the Northeast and East-central regions of Minnesota from 2006-2008 for invasive/exotic and native Scolytinae using Lindgren funnel traps baited with one of four lures (a/β-pinene, ultra-high-release ethanol [EtOH], EtOH+a-pinene, and Ips 3-part). We captured 16,841 scolytines (representing 25 genera) of which over 40% were Ips pini (Say) and Ips grandicollis (Eichhoff). We found two exotic Scolytinae, Scolytus multistriatus (Marsham) and Scolytus schevyrewi Semenov, both of which had previously been recorded in Minnesota. Two native species, Conophthorus coniperda (Schwarz) and Crypturgus pusillus (Gyllenhal), were reported for the first time in Minnesota. Non-metric multi- dimensional scaling and analysis of similarities indicate that lure types capture different Scolytinae communities, while year, weather pattern and region factors were not significant. We also report the seasonal phenology of the seven most abundantly captured species; Dendroctonus valens LeConte, Hylastes porculus Erichson, Hylurgops rugipennis pinifex (Fitch),I. grandicollis, I. pini, Orthotomicus caelatus (Eichhoff) and Pityophthorus spp. Eichhoff

    Bark Beetle (Coleoptera: Curculionidae: Scolytinae) Community Structure in Northeastern and Central Minnesota

    Get PDF
    Large-scale surveys of forest insects provide two distinct benefits: the detection of invasive and exotic species that cause millions of dollars of damage annually to forest and ornamental industries, and the addition of a wealth of species distribution and diversity information to the scientific community. We intensively surveyed the Northeast and East-central regions of Minnesota from 2006-2008 for invasive/exotic and native Scolytinae using Lindgren funnel traps baited with one of four lures (a/β-pinene, ultra-high-release ethanol [EtOH], EtOH+a-pinene, and Ips 3-part). We captured 16,841 scolytines (representing 25 genera) of which over 40% were Ips pini (Say) and Ips grandicollis (Eichhoff). We found two exotic Scolytinae, Scolytus multistriatus (Marsham) and Scolytus schevyrewi Semenov, both of which had previously been recorded in Minnesota. Two native species, Conophthorus coniperda (Schwarz) and Crypturgus pusillus (Gyllenhal), were reported for the first time in Minnesota. Non-metric multi- dimensional scaling and analysis of similarities indicate that lure types capture different Scolytinae communities, while year, weather pattern and region factors were not significant. We also report the seasonal phenology of the seven most abundantly captured species; Dendroctonus valens LeConte, Hylastes porculus Erichson, Hylurgops rugipennis pinifex (Fitch),I. grandicollis, I. pini, Orthotomicus caelatus (Eichhoff) and Pityophthorus spp. Eichhoff

    Asymmetry of planum temporale constrains interhemispheric language plasticity in children with focal epilepsy.

    Get PDF
    Reorganization of eloquent cortex enables rescue of language functions in patients who sustain brain injury. Individuals with left-sided, early-onset focal epilepsy often show atypical (i.e. bilateral or right-sided) language dominance. Surprisingly, many patients fail to show such interhemispheric shift of language despite having major epileptogenic lesions in close proximity to eloquent cortex. Although a number of epilepsy-related factors may promote interhemispheric plasticity, it has remained unexplored if neuroanatomical asymmetries linked to human language dominance modify the likelihood of atypical lateralization. Here we examined the asymmetry of the planum temporale, one of the most striking asymmetries in the human brain, in relation to language lateralization in children with left-sided focal epilepsy. Language functional magnetic resonance imaging was performed in 51 children with focal epilepsy and left-sided lesions and 36 healthy control subjects. We examined the association of language laterality with a range of potential clinical predictors and the asymmetry of the length of the planum temporale. Using voxel-based methods, we sought to determine the effect of lesion location (in the affected left hemisphere) and grey matter density (in the unaffected right hemisphere) on language laterality. Atypical language lateralization was observed in 19 patients (38%) and in four controls (11%). Language laterality was increasingly right-sided in patients who showed atypical handedness, a left perisylvian ictal electroencephalographic focus, and a lesion in left anterior superior temporal or inferior frontal regions. Most striking was the relationship between rightward asymmetry of the planum temporale and atypical language (R = 0.70, P < 0.0001); patients with a longer planum temporale in the right (unaffected) hemisphere were more likely to have atypical language dominance. Voxel-based regression analysis confirmed that increased grey matter density in the right temporo-parietal junction was correlated with right hemisphere lateralization of language. The length of the planum temporale in the right hemisphere was the main predictor of language lateralization in the epilepsy group, accounting for 48% of variance, with handedness accounting for only a further 5%. There was no correlation between language lateralization and planum temporale asymmetry in the control group. We conclude that asymmetry of the planum temporale may be unrelated to language lateralization in healthy individuals, but the size of the right, contra-lesional planum temporale region may reflect a 'reserve capacity' for interhemispheric language reorganization in the presence of a seizure focus and lesions within left perisylvian regions

    Door-to-Door Mobility: Evaluating a Bus Rapid Transit Community Transport Concept

    Get PDF
    Portland, Oregon’s regional government, Metro, has designated specific communities in outer Southeast Portland as areas that should be planned to accommodate future population growth. Both Metro and the Tri-County Metropolitan Transportation District of Oregon (Tri-Met) have expressed a desire for Bus Rapid Transit (BRT) service to this area from downtown Portland, within a corridor approximately following Southeast Powell Boulevard and Foster Road. A preliminary analysis of BRT alignment alternatives was completed for this study. After six possible alignment options linking downtown Portland with Pleasant Valley and Damascus Town Centers were identified, a multivariate corridor analysis was applied to each option. Criteria used to select the best alignment alternative included regional connectivity, local ridership, operational costs, trip duration, distance, right-of-way and political feasibility, environmental costs, and capital costs. In addition, recommendations have been made for possible station locations along the preferred alternative corridor. This analysis is intended to assist Tri-Met in its efforts to begin planning, designing, and implementing a BRT system in this area. The results of the analysis suggest that a BRT system is feasible for the Powell/Interstate 205/Foster alignment. The outcome also suggests that BRT has the capacity to influence land use and could generate high transit ridership. Overall, it is recommended that Tri-Met and Metro continue to evaluate opportunities for BRT in this alignment

    Door-to-Door Mobility: Evaluating a Bus Rapid Transit Community Transport Concept

    No full text
    Portland, Oregon’s regional government, Metro, has designated specific communities in outer Southeast Portland as areas that should be planned to accommodate future population growth. Both Metro and the Tri-County Metropolitan Transportation District of Oregon (Tri-Met) have expressed a desire for Bus Rapid Transit (BRT) service to this area from downtown Portland, within a corridor approximately following Southeast Powell Boulevard and Foster Road. A preliminary analysis of BRT alignment alternatives was completed for this study. After six possible alignment options linking downtown Portland with Pleasant Valley and Damascus Town Centers were identified, a multivariate corridor analysis was applied to each option. Criteria used to select the best alignment alternative included regional connectivity, local ridership, operational costs, trip duration, distance, right-of-way and political feasibility, environmental costs, and capital costs. In addition, recommendations have been made for possible station locations along the preferred alternative corridor. This analysis is intended to assist Tri-Met in its efforts to begin planning, designing, and implementing a BRT system in this area. The results of the analysis suggest that a BRT system is feasible for the Powell/Interstate 205/Foster alignment. The outcome also suggests that BRT has the capacity to influence land use and could generate high transit ridership. Overall, it is recommended that Tri-Met and Metro continue to evaluate opportunities for BRT in this alignment
    corecore