6,261 research outputs found

    Late Miocene to early Pliocene biofacies of Wanganui and Taranaki Basins, New Zealand: Applications to paleoenvironmental and sequence stratigraphic analysis

    Get PDF
    The Matemateaonga Formation is late Miocene to early Pliocene (upper Tongaporutuan to lower Opoitian New Zealand Stages) in age. The formation comprises chiefly shellbeds, siliciclastic sandstone, and siltstone units and to a lesser extent non-marine and shallow marine conglomerate and rare paralic facies. The Matemateaonga Formation accumulated chiefly in shelf paleoenvironments during basement onlap and progradation of a late Miocene to early Pliocene continental margin wedge in the Wanganui and Taranaki Basins. The formation is strongly cyclothemic, being characterised by recurrent vertically stacked facies successions, bounded by sequence boundaries. These facies accumulated in a range of shoreface to mid-outer shelf paleoenvironments during conditions of successively oscillating sea level. This sequential repetition of facies and the biofacies they enclose are the result of sixth-order glacio-eustatic cyclicity. Macrofaunal associations have been identified from statistical analysis of macrofossil occurrences collected from multiple sequences. Each association is restricted to particular lithofacies and stratal positions and shows a consistent order and/or position within the sequences. This pattern of temporal paleoecologic change appears to be the result of lateral, facies-related shifting of broad biofacies belts, or habitat-tracking, in response to fluctuations of relative sea level, sediment flux, and other associated paleoenvironmental variables. The associations also show strong similarity in terms of their generic composition to biofacies identified in younger sedimentary strata and the modern marine benthic environment in New Zealand

    Superconductivuty versus Tunneling in a Doped Antiferromagnetic Ladder

    Full text link
    The low-energy charge excitations of a doped antiferromagnetic ladder are modeled by a system of interacting spinless fermions that live on the same ladder. A relatively large spin gap is assumed to ``freeze out'' all spin fluctuations. We find that the formation of rung hole pairs coincides with the opening of a single-particle gap for charge excitations along chains and with the absence of coherent tunneling in between chains. We also find that such hole pairs condense into either a crystalline or superconducting state as a function of the binding energy.Comment: 15 pgs. in PLAIN TeX, 2 figs. in postscript, to appear in Phys. Rev.

    Analytical treatment of critical collapse in 2+1 dimensional AdS spacetime: a toy model

    Get PDF
    We present an exact collapsing solution to 2+1 gravity with a negative cosmological constant minimally coupled to a massless scalar field, which exhibits physical properties making it a candidate critical solution. We discuss its global causal structure and its symmetries in relation with those of the corresponding continously self-similar solution derived in the Λ=0\Lambda=0 case. Linear perturbations on this background lead to approximate black hole solutions. The critical exponent is found to be γ=2/5\gamma = 2/5.Comment: 22 pages, 6 figures. Major changes in the discussions of Sects. 2 and 5. The value of the critical exponent has been revised to \gamma = 2/

    Cosmological perturbations and classical change of signature

    Get PDF
    Cosmological perturbations on a manifold admitting signature change are studied. The background solution consists in a Friedmann-Lemaitre-Robertson- Walker (FLRW) Universe filled by a constant scalar field playing the role of a cosmological constant. It is shown that no regular solution exist satisfying the junction conditions at the surface of change. The comparison with similar studies in quantum cosmology is made.Comment: 35 pages, latex, 2 figures available at [email protected], to appear in Physical Review

    Tunneling dynamics in exactly-solvable models with triple-well potentials

    Full text link
    Inspired by new trends in atomtronics, cold atoms devices and Bose-Einstein condensate dynamics, we apply a general technique of N=4 extended Supersymmetric Quantum Mechanics to isospectral Hamiltonians with triple-well potentials, i.e. symmetric and asymmetric. Expressions of quantum-mechanical propagators, which take into account all states of the spectrum, are obtained, within the N = 4 SQM approach, in the closed form. For the initial Hamiltonian of a harmonic oscillator, we obtain the explicit expressions of potentials, wavefunctions and propagators. The obtained results are applied to tunneling dynamics of localized states in triple-well potentials and for studying its features. In particular, we observe a Josephson-type tunneling transition of a wave packet, the effect of its partial trapping and a non-monotonic dependence of tunneling dynamics on the shape of a three-well potential. We investigate, among others, the possibility of controlling tunneling transport by changing parameters of the central well, and we briefly discuss potential applications of this aspect to atomtronic devices.Comment: Latex, 28 pages, 7 Figs, 2 Tables; minor presentation changes, journal versio

    Bondian frames to couple matter with radiation

    Full text link
    A study is presented for the non linear evolution of a self gravitating distribution of matter coupled to a massless scalar field. The characteristic formulation for numerical relativity is used to follow the evolution by a sequence of light cones open to the future. Bondian frames are used to endow physical meaning to the matter variables and to the massless scalar field. Asymptotic approaches to the origin and to infinity are achieved; at the boundary surface interior and exterior solutions are matched guaranteeing the Darmois--Lichnerowicz conditions. To show how the scheme works some numerical models are discussed. We exemplify evolving scalar waves on the following fixed backgrounds: A) an atmosphere between the boundary surface of an incompressible mixtured fluid and infinity; B) a polytropic distribution matched to a Schwarzschild exterior; C) a Schwarzschild- Schwarzschild spacetime. The conservation of energy, the Newman--Penrose constant preservation and other expected features are observed.Comment: 20 pages, 6 figures; to appear in General Relativity and Gravitatio

    Quasilocal Thermodynamics of Dilaton Gravity coupled to Gauge Fields

    Get PDF
    We consider an Einstein-Hilbert-Dilaton action for gravity coupled to various types of Abelian and non-Abelian gauge fields in a spatially finite system. These include Yang-Mills fields and Abelian gauge fields with three and four-form field strengths. We obtain various quasilocal quantities associated with these fields, including their energy and angular momentum, and develop methods for calculating conserved charges when a solution possesses sufficient symmetry. For stationary black holes, we find an expression for the entropy from the micro-canonical form of the action. We also find a form of the first law of black hole thermodynamics for black holes with the gauge fields of the type considered here.Comment: 41 pages, latex, uses fonts provided by AMSTe

    The geodesic structure of the Schwarzschild Anti-de Sitter black hole

    Full text link
    In the present work we found the geodesic structure of an AdS black hole. By means of a detailed analyze of the corresponding effective potentials for particles and photon, we found all the possible motions which are allowed by the energy levels. Radial and non radial trajectories were exactly evaluated for both geodesics. The founded orbits were plotted in order to have a direct visualization of the allowed motions. We show that the geodesic structure of this black hole presents new type of motions not allowed by the Schwarzschild spacetime.Comment: 17 pages, 11 figure

    Lightly Doped t-J Three-Leg Ladders - an Analog for the Underdoped Cuprates

    Full text link
    The three-leg ladder has one odd-parity and two even-parity channels. At low doping these behave quite differently. Numerical calculations for a t-J model show that the initial phase upon hole doping has two components - a conducting Luttinger liquid in the odd-parity channel, coexisting with an insulating (i.e. undoped) spin liquid phase in the even-parity channels. This phase has a partially truncated Fermi surface and violates the Luttinger theorem. This coexistence of conducting fermionic and insulating paired bosonic degrees of freedom is similar to the recent proposal of Geshkenbein, Ioffe, and Larkin for the underdoped spin-gap normal phase of the cuprates. A mean field approximation is derived which has many similarities to the numerical results. One difference however is an induced hole pairing in the odd-parity channel at arbitrary small dopings, similar to that proposed by Geshkenbein, Ioffe, and Larkin for the two-dimensional case. At higher dopings, we propose that a quantum phase transition will occur as holes enter the even-parity channels, resulting in a Luther-Emery liquid with hole pairing with essentially d-wave character. In the mean field approximation a crossover occurs which we interpret as a reflection of this quantum phase transition deduced from the numerical results.Comment: RevTex, 36 pages with 16 figure

    Quasi-excitations and superconductivity in the t-J model on a ladder

    Full text link
    We study the t-J model on a ladder by using slave-fermion-CP^1 formalism which is quite useful for study of lightly-doped high-T_c cuprates. By integrating half of spin variables, we obtain a low-energy effective field theory whose spin part is nothing but CP^1 sigma model. We especially focus on dynamics of composite gauge field which determines properties of quasi-excitations. Value of the coefficient of the topological term strongly influences gauge dynamics and explaines why properties of quasi-excitations depend on the number of legs of ladder. We also show that superconductivity appears as a result of short-range antiferromagnetism and order parameter has d-wave type symmetry.Comment: Latex, 28 pages and 1 figur
    • 

    corecore